Remove Connect Remove Low Cost Remove Solar Remove Water
article thumbnail

Rice U team creates low-cost, high-efficiency integrated device for solar-driven water splitting; solar leaf

Green Car Congress

Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The platform developed by the Brown School of Engineering lab of Rice materials scientist Jun Lou integrates catalytic electrodes and perovskite solar cells that, when triggered by sunlight, produce electricity.

Low Cost 243
article thumbnail

Exeter team develops low-cost photoelectrode for spontaneous water-splitting using sunlight

Green Car Congress

The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability. A promising way of storing solar energy is via chemical fuels, in particular hydrogen as it is considered as a future energy carrier. —Pawar and Tahir.

Water 342
article thumbnail

EPFL team develops low-cost water splitting cell with solar-to-hydrogen efficiency of 12.3%

Green Car Congress

Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Splitting water requires an applied voltage of at least 1.23

Low Cost 278
article thumbnail

HyperSolar working with Suzhou GH New Energy to accelerate manufacturing of renewable solar hydrogen panels

Green Car Congress

the developer of a technology to produce renewable hydrogen using sunlight and water ( earlier post ), is working with Suzhou GH New Energy Co. a division of GCL Poly, in China to make the final modifications to the solar cells required to manufacture the Gen 1 hydrogen production panels to be used in demonstration pilot plants.

Solar 379
article thumbnail

Swiss team develops effective and low-cost solar water-splitting device; 14.2% solar-to-hydrogen efficiency

Green Car Congress

The prototype system is made up of three interconnected, new-generation, crystalline silicon solar cells attached to an electrolysis system that does not rely on rare metals. crystalline Silicon (c-Si) solar cells show high solar-to-electricity efficiencies, and have demonstrated stabilities in excess of 25 years.

Solar 150
article thumbnail

MIT team outlines path to low-cost solar-to-fuels devices; the artificial leaf

Green Car Congress

A team of researchers at MIT has described a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. This paper performs an equivalent circuit analysis for multiple series-connected devices. Earlier post.)

MIT 218
article thumbnail

NSF/DOE partnership to award up to $18M for H2 production via advanced solar water-splitting technologies; separate DOE solicitation

Green Car Congress

A key benefit of this joint effort is the direct coordination of NSF-funded use-inspired basic research and EERE-funded applied R&D toward the development of cost-effective large-scale systems for the low-carbon production of hydrogen through advanced solar water-splitting technologies.

Water 210