This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
A team from the University of New South Wales (Australia) reports on a novel core-shell strategy leading to high and stable hydrogen absorption/desorption cycling for sodium borohydride (NaBH 4 ) under mild pressure conditions (4 MPa) in an open-access paper in the journal ACS Nano. With a high storage capacity (10.8
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.
Researchers from UNSW Sydney (Australia) report in an open-access paper in the Journal of Power Sources on the use of hard carbons derived from automotive shredder residue (ASR) as a suitable anode electroactive material for sodium-ion batteries (NIBs). The situation is much worse for graphite. Sarkar et al. 2023.233577
The data for 10 nm Sn (tin) NCs are shown for comparison. Initial studies revealed that antimony could be suitable for both rechargeable lithium- and sodium-ion batteries because it is able to store both kinds of ions. 20C (1C = 0.66 1 , 9 cycles at each C-rate, first cycle at 0.1C).
Metal hydride tanks store hydrogen in a relatively manageable volume but are very heavy and expensive, as well as operating only at high temperatures or far too slowly. The nontoxic aqueous solution of formate is easily stored and transported. to sodium formate in 96% yield at 70 °C in water/THF without additional CO 2.
published in the ACS journal Chemical Reviews , reviews in detail four stationary storage systems considered the most promising candidates for electrochemical energy storage: vanadium redox flow; sodium-beta alumina membrane; lithium-ion; and lead-carbon batteries. In their study, Yang et al. Credit: ACS, Yang et al. Click to enlarge.
The Skyblade 360 fuel cell system developed by HES and DSO is extremely lightweight in comparison to lithium batteries that typically power this aircraft, and it is also extremely compact: its 1L fuel cartridge holds 1000 Wh of usable energy. It took HES several years to achieve this performance.
By comparison, the lithium reserves at Silver Peak, Nev.—the Before CO 2 can be safely and successfully stored, these brines must first be removed from underground geologic formations to manage pressure in the reservoirs during CO 2 injection.
C, in comparison with bare sulfur and sulfur–TiO 2 core–shell nanoparticles. To prepare the material, the team reacted sodium thiosulfate with hydrochloric acid to create monodisperse sulfur nanoparticles (NPs); these NPs were then coated with TiO 2 , resulting in the formation of sulfur–TiO 2 core–shell nanoparticles.
The size of these batteries (in comparison to those used for portable electronics) places severe pressure on materials resources. We need new storage technologies if more renewables are to be used on the electrical grid; similarly, the electrification of transport requires much cheaper and longer-lasting batteries. Source: Grey and Tarascon.
The shelf-life of stored charge in rechargeable devices does not scale linearly with maximum SP and has led to trends referred to as ‘range-anxiety’, ‘compulsive charging’, etc. Comparison of commercially available electric vehicles driving range to recharge time (min) (for a full recharge), abbreviated as MPM (and for use akin to MPG).
Monique closes her EV’s fueling port and heads onto the highway with enough stored energy to drive 640 kilometers (400 miles). The scientists found the nanofluids could be used in a system with an energy-storing potential approaching that of a lithium-ion battery and with the pumpable recharging of a flow battery.
Aqua Metals works with companies that are really good at collecting, safely transporting, storing, crushing and separating spent lithium-ion batteries. There are real challenges with waste streams—they yield a lot of sulfuric acid and sodium sulfate, which will need to get landfilled.
Aqua Metals works with companies that are really good at collecting, safely transporting, storing, crushing and separating spent lithium-ion batteries. There are real challenges with waste streams—they yield a lot of sulfuric acid and sodium sulfate, which will need to get landfilled.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content