This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In a paper in Nature Materials , a team of researchers from BASF SE and Justus-Liebig-Universität Gießen report on the performance of a sodium-air (sodium superoxide) cell. Their work, they suggest, demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal–air batteries.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.
British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Sodium-ion intercalation batteries—i.e., Oxford University was also a partner. Earlier post.)
V), which contributes to the low rechargeability. Potassium, an alkali metal similar to lithium (and sodium) can be used in a rechargeable battery. For comparison, they built a Li?O V), which renders the system with a low round-trip energy efficiency around 60%. O 2 batteries.In —Ren and Wu. Bender, Miloš Vra?ar,
The data for 10 nm Sn (tin) NCs are shown for comparison. Initial studies revealed that antimony could be suitable for both rechargeable lithium- and sodium-ion batteries because it is able to store both kinds of ions. 20C (1C = 0.66 1 , 9 cycles at each C-rate, first cycle at 0.1C).
Most importantly, after full conversion of the formate, the bicarbonate solution may be recharged with hydrogen to close the cycle. Bicarbonates are a component of many natural stones and are also commonly used as baking powder or sherbet (sodium bicarbonate, NaHCO 3 ). formed in the dehydrogenation.
C, in comparison with bare sulfur and sulfur–TiO 2 core–shell nanoparticles. To prepare the material, the team reacted sodium thiosulfate with hydrochloric acid to create monodisperse sulfur nanoparticles (NPs); these NPs were then coated with TiO 2 , resulting in the formation of sulfur–TiO 2 core–shell nanoparticles. —Yi Cui.
Described in a paper published in the RSC journal Energy & Environmental Science , the smart membrane separator could enable the design of a new category of rechargeable/refillable energy storage devices with high energy density and specific power that would overcome the contemporary limitations of electric vehicles. Click to enlarge.
In a review paper in the journal Nature Materials , Jean-Marie Tarascon (Professor at College de France and Director of RS2E, French Network on Electrochemical Energy Storage) and Clare Gray (Professor at the University of Cambridge), call for integrating the sustainability of battery materials into the R&D efforts to improve rechargeable batteries.
The battery in her EV is a variation on the flow battery , a design in which spent electrolyte is replaced rather than recharged. The scientists found the nanofluids could be used in a system with an energy-storing potential approaching that of a lithium-ion battery and with the pumpable recharging of a flow battery.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content