This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-costwater-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Splitting water requires an applied voltage of at least 1.23 V and up to 1.5
volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 Nanosystem for water electrolysis. HyperSolar, Inc. announced that it had reached 1.25 V (at 25 °C at pH 0). Click to enlarge.
The extended operating time of Heliogen’s technology and Bloom Energy’s ability to utilize heat efficiently is designed to reduce the cost of green hydrogen production compared to competing solutions. Because it operates at high temperatures, the Bloom Electrolyzer requires less energy to break up water molecules and produce hydrogen.
Researchers at Stanford University, with colleagues at Oak Ridge National Laboratory and other institutions, have developed a nickel-based electrocatalyst for low-costwater-splitting for hydrogen production with performance close to that of much more expensive commercial platinum electrocatalysts. V with good stability.
Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%. It utilizes water and sunlight to get chemical fuels.
Researchers at Southwest Research Institute (SwRI) and The University of Texas at San Antonio (UTSA) have determined that biochar, a substance produced from plant matter, is a safe, effective and inexpensive method to treat flowback water following hydraulic fracturing, or fracking. —Maoqi Feng, SwRI. —Zhigang Feng, USTA.
Daniel Nocera and his associates have found another formulation, based on inexpensive and widely available materials, that can efficiently catalyze the splitting of water molecules using electricity. Earlier post.). Materials for the new catalyst are even more abundant and inexpensive than those required for the first. Earlier post.)
But until now, flow batteries have relied on chemicals that are expensive or hard to maintain, driving up the cost of storing energy. Vanadium is used in the most commercially advanced flow-battery technology now in development, but it sets a rather high floor on the cost per kilowatt-hour at any scale. Commercialization.
A new desalination process developed by engineers at MIT could treat produced water—deep water, often heavily laden with salts and minerals—from natural gas wells at relatively lowcost. In fact, he adds, “ The biggest advantage is when you deal with high salinity. ”.
By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure). Heldebrant, D.,
Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at lowcost are required. Cost is a greater concern. We decided we needed to develop a new chemistry if we were going to make low-cost batteries and battery electrodes for the power grid.
A commercial Pt/C cathode-assisted, core–shell Co@NC–anode water electrolyzer delivers 10 mA cm ?2 V—70 mV lower than that of the IrO 2 –anode water electrolyzer. In electrocatalytic water splitting, oxygen gas generates in the anode due to the oxygen evolution reaction (OER). 2 at a cell voltage of 1.59
Borla will combine this with its diesel exhaust technology to create a low-cost, novel system that doubles as a device to extract potable water from diesel and other internal combustion exhaust. For the recovery of previously wasted energy from relatively low temperature (.
Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.
Iron and nickel, which are found in abundance on Earth, would replace precious metals ruthenium, platinum and iridium that up until now are regarded as benchmark catalysts in the water-splitting process. —Suryanto et al. —Suryanto et al. Suryanto et al.
Researchers at Washington State University, with colleagues at Argonne National Laboratory and Pacific Northwest National Laboratory, have combined inexpensive nickel and iron in a very simple, five-minute process to create large amounts of a high-quality catalyst required for water splitting. SEM image of NiFe nanofoams. Source: WSU.
In collaboration with NE, DOE’s Hydrogen and Fuel Cell Technologies Office will provide funding and project oversight for the two hydrogen production–related projects that were selected: General Electric Global Research, Scaled Solid Oxide Co-Electrolysis for Low-Cost Syngas Synthesis from Nuclear Energy.
Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. aligned with the low-cost systems engineering and. Earlier post.). —Reece et al.
The new analysis follows up on 2011 research that produced a proof of concept of an artificial leaf—a small device that, when placed in a container of water and exposed to sunlight, would produce bubbles of hydrogen and oxygen. The original demonstration leaf in 2011 had low efficiencies, converting less than 4.7% Earlier post.)
a global supplier of hydrogen fuel cell-powered commercial vehicles, announced a joint venture to build up to 100 hydrogen hubs across the United States and globally. into locally produced, renewable hydrogen for Hyzon’s fleet of zero-emission commercial vehicles. Raven SR , a renewable fuels company, and Hyzon Motors Inc.,
The most common method to enhance oil retrieval following primary recovery is termed waterflooding, which entails injecting water into wells to maintain or increase reservoir pressure. This process is limited in effect because oil is more viscous than water and is bypassed as water flows through the rock matrix.
the developer of a technology to produce renewable hydrogen using sunlight and water ( earlier post ), is working with Suzhou GH New Energy Co. Gen 2 will use easily scalable low-cost electrochemical processing for manufacturing multi-junction nanoparticles for PEC production of hydrogen. HyperSolar, Inc.,
A multi-institutional team led by the US Department of Energy’s (DOE) Argonne National Laboratory (ANL) has developed a low-cost cobalt-based catalyst for the production of hydrogen in a proton exchange membrane water electrolyzer (PEMWE). volts (Nafion 212 membrane) and low degradation in an accelerated stress test.
ENEOS Corporation has constructed a demonstration plant in Brisbane, Australia, to produce methylcyclohexane (MCH), a liquid organic hydrogen carrier (LOHC), using its proprietary low-cost electrochemical synthesis of organic hydride method Direct MCH. Eneos’ Direct MCH uses an electrolyzer to produce MCH directly from water.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., The SOEC is a ceramic cell that uses electricity to split water molecules (H 2 O) into hydrogen (H 2 ) and oxygen (O 2 ). —Amy Hebert, Chief Commercial Officer of Haldor Topsoe.
Most recently in November 2022, ABTC was selected for a competitive US DOE grant for a $20-million project to develop and commercialize a set of next-generation battery recycling technologies to even further enhance the recovery of recycled products and reduce the cost of operations.
have entered into a multi-year agreement to co-develop a low-cost system to deliver carbon dioxide to commercial-scale, open-pond, algae-to-fuel cultivation systems. In addition, Linde will supply all of the CO 2 to Sapphire’s commercial demonstration facility in Columbus, New Mexico.
As the V OC of the presented c-Si cells is only ∼600 mV, four cells need to be connected in series to achieve stable water splitting performance. We demonstrate in this study that, thanks to their high V OC , three series-connected SHJ cells can already stably drive the water splitting reaction at unprecedented SHE. Schüttauf et al.
H2Pro is developing a new way of producing hydrogen from water. Similar to electrolysis, its technology, E-TAC (Electrochemical – Thermally Activated Chemical)—developed at Technion, Israel Institute of Technology—uses electricity to split water into hydrogen and oxygen. HHV) inside the reactors and a 95% system efficiency.
AW-Energy Oy is entering the commercial hydrogen market by introducing a combined WaveRoller and HydrogenHub process for the production of green hydrogen. Wave energy holds the greatest potential to generate constant low-cost green hydrogen. The technology can be deployed as single units or in farms.
The Topsoe SOEC electrolyzer is a compact stack built primarily from abundant, low-cost ceramic materials enclosed within a metal housing. To produce hydrogen, it utilizes electricity to split water molecules (H 2 O) into hydrogen (H 2 ) and oxygen (O 2 ). —Roeland Baan, CEO at Topsoe.
Researchers at the University of Rochester (New York) have developed a robust and highly active system for solar hydrogen generation in water using semiconductor nanocrystals (NCs) and a nickel catalyst. The nanocrystals were capped with DHLA (dihydrolipoic acid) to make them water-soluble. only modest H 2 production. —Han et al.
Researchers at the University of Houston have developed a catalyst—composed of easily available, low-cost materials and operating far more efficiently than previous catalyst—that can split water into hydrogen and oxygen. A paper on their work is published in Proceedings of the National Academy of Sciences (PNAS).
European Energy , a Danish developer and operator of green energy projects, has ordered a 50 MW electrolyzer from Siemens Energy for use in developing the first large-scale commercial e-Methanol production facility. Start of commercial methanol production is planned for second half of 2023.
A team from the University of Houston and Hunan Normal University in China has developed an active and durable oxygen evolution reaction (OER) catalyst for water splitting that meets commercial crtieria for current densities at low overpotentials. to deliver 200 mA cm -2 , unsatisfactory for the commercial requirements of 1.8-2.4
Siemens Energy has also already started preparatory work for the next major commercial phase of the project. We’re jointly developing and realising the world’s first integrated and commercial large-scale plant for producing synthetic, climate-neutral fuels. neutral fuel using low-cost green wind power.
Example of micro fibers produced with 20 wt % AB (ammonia borane) in water as core solution, showing smooth (nonporous) and cylindrical (noncollapsed) fibers; from a 2010 paper by the scientific team. It also protects the hydrides from oxygen and water, making it possible to handle it in air. Credit: ACS, Kurban et al.
a lowcost, raw materials that do not raise concerns in terms of supply bottlenecks (electrodes that do not include PGMs, stainless steel current collectors), a compact design, the adoption of feeds based on non-corrosive liquids (low concentration alkali or DI water), and differential pressure operation.
from an offshore wind farm—the process of producing hydrogen from water (electrolysis) can be decarbonized. A key objective of the Gigastack project is to identify and to highlight regulatory, commercial and technical challenges for real applications of industrial-scale renewable hydrogen systems.
Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. In theory, the decomposition potential of water is 4.27
The findings of their study, published in the journal Angewandte Chemie, International Edition , suggest that cell-free biosystems could produce hydrogen from biomass xylose at lowcost. In the process, hydrogen is produced from xylose and water in one reactor containing 13 enzymes, including a novel polyphosphate xylulokinase (XK).
Researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have shown for the first time that a low-cost, non-precious metal cobalt phosphide (CoP) catalyst catalyst can split water and generate hydrogen gas for hours on end in the harsh environment of a commercial device.
Heliogen, a company that is transforming sunlight to create and replace fuels, recently announced its launch and also said that it has—for the first time commercially—concentrated solar energy to exceed temperatures greater than 1,000 degrees Celsius.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content