article thumbnail

Researchers Develop Solid-State, Rechargeable Lithium-Air Battery; Potential to Exceed 1,000 Wh/kg

Green Car Congress

Sample UDRI solid-state, rechargeable lithium-air batteries, and Dr. Binod Kumar. Engineers at the University of Dayton Research Institute (UDRI) have developed a solid-state, rechargeable lithium-air battery. Abraham (2010) A Solid-State, Rechargeable, Long Cycle Life LithiumAir Battery. Click to enlarge.

article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.

Li-ion 281
article thumbnail

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Diagram of the STAIR (St Andrews Air) cell. Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Lithium-air batteries use a catalytic air cathode in combination with an electrolyte and a lithium anode. Click to enlarge.

article thumbnail

OSU team demonstrates concept of potassium-air battery as alternative to lithium-air systems

Green Car Congress

contrast with LiO 2 and NaO 2 , KO 2 is thermodynamically stable and commercially available. Potassium, an alkali metal similar to lithium (and sodium) can be used in a rechargeable battery. mA/cm 2 —the lowest ever reported in metal-oxygen batteries, according to the team. O 2 batteries.In —Ren and Wu.

article thumbnail

MIT Researchers Report Progress on Catalyst Development for Lithium-Air Batteries

Green Car Congress

A team of researchers at MIT led by Professor Yang Shao-Horn have found that gold-carbon (Au/C) and platinum-carbon (Pt/C) catalysts have a strong influence on the charge and discharge voltages of rechargeable lithium-air (Li-O 2 ) batteries, and thus enable a higher efficiency than simple carbon electrodes in these batteries.

article thumbnail

Researchers directly visualize formation and disappearance of Li-O2 reaction products; insights to support development of rechargeable lithium-air batteries

Green Car Congress

air (Li-O 2 ) battery represents a conceptually attractive energy storage device for electric vehicle applications due to its high theoretical energy storage capacity ( earlier post ); however, among the obstacles to commercialization is a lack of fundamental understanding of the reactions involved.

article thumbnail

Toyota Researches Solid-State Batteries As Mid-Term Option To Lithium-Air

Green Car Reports

Lithium-air batteries, with high energy density, low weight and useful stability, are a major candidate for future electric car batteries. However, commercialization may not happen for another fifteen years or more given current limitations, so improvements in the meantime must be found elsewhere.