This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. The conversion rate reaches 32.9 ± 1.38 Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4.
reports that it has achieved full conversion ( 99% + ) of king grass cellulosic material to water soluble sugars on a repeatable basis. This conversion occurs with a reaction time of less than one minute. Full conversion is the most efficient use of the feedstock possible and exceeds earlier projections.
Compass Minerals, a leading global provider of essential minerals, announced the successful, third-party conversion testing of its lithium brine resource into both lithium carbonate and battery-grade lithium hydroxide, representing a significant milestone in its previously announced lithium development project. Source: Compass Minerals.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. A paper describing their system is publishedin the journal Joule. The hydrogen cell contains the cathode, and it is physically separated from the oxygen cell.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner. Qian Wang et al.
The EU-funded SOLAR-JET project has demonstrated the production of aviation kerosene from concentrated sunlight, CO 2 captured from air, and water. The solar reactor technology features enhanced radiative heat transfer and fast reaction kinetics, which are crucial for maximizing the solar-to-fuel energy conversion efficiency.
Westinghouse Electric Company has signed a service agreement with the Canadian Nuclear Safety Commission to bring its eVinci microreactor closer to commercialization. The heat pipes also enable operation at higher temperatures, enabling higher efficient power conversion systems and high-grade process heat.
0002823 ) to support the extraction and conversion of lithium from geothermal brines to use in batteries for stationary storage and electric vehicles. Projects for topic one can: Promote process intensification, such as through the elimination of intermediate lithium carbonate conversion.
Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.
By utilizing residual biomass solids from the ethanol conversion process, the plant generates 21 megawatts (MW) of electricity—enough to power itself and provide excess clean renewable power to the local Stevens County community.
developed a halogen conversion–intercalation chemistry in graphite that produces composite electrodes with a capacity of 243 mAh g -1 (for the total weight of the electrode) at an average potential of 4.2 Proposed conversion–intercalation chemistry. A team of researchers led by a group from the University of Maryland has. V) and Cl ?
Cool Planet has devised a biomass-to-liquids thermochemical conversion process that simultaneously produces liquid fuels and sequesterable biochar useful as a soil amendment. The output from each catalytic array when cooled is comprised of volatile gases, renewable fuel and water. Earlier post.). Depending on the temperature (300 ?C
Joule, the developer of a direct, single-step, continuous process for the production of solar hydrocarbon fuels ( earlier post ), has extended its solar CO 2 conversion platform to produce renewable gasoline- and jet fuel-range hydrocarbons. Joule is now commercializing its first product, Sunflow-E, for global availability in early 2015.
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. conversion efficiency from solar energy to hydrogen, a record with earth-abundant materials.
Researchers in Japan report that a commercially available TiO 2 with a large number of surface oxygen vacancies, when photo-irradiated by UV light in pure water with nitrogen—successfully produces ammonia (NH 3 ). As a result of this, NH 3 is produced from water and N 2 under ambient conditions by using sunlight as energy source.
This project will complete key engineering design and demonstration tests to enable cost-competitive, carbon-neutral production of synthetic jet fuel and diesel using nuclear energy from existing light water reactors. 3M Company will develop an isotope recovery process to enable commercial deployment of molten salt reactors.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., Solid oxide electrolysis cell (SOEC) technology is attractive because of unrivaled conversion efficiencies—a result of favorable thermodynamics and kinetics at higher operating temperatures.
CO can then be reacted with H 2 O via the water?gas Moreover, Bi is a byproduct of Pb, Cu, and Sn refining, and has few significant commercial applications, resulting in the price of Bi being low and stable. Carbon Capture and Conversion (CCC) Fuels Power Generation' Tropsch methods. —DiMeglio and Joel Rosenthal.
For the future, it will be important to commercialize advanced biofuel conversion technologies, which utilize a broader and more sustainable feedstock base. Under these conditions, biomass is converted into a crude bio-oil, which is separated from the process water behind the reactor.
A University of Alberta spinoff company, Forge Hydrocarbons, is commercializing a patented lipids-to-hydrocarbons (LTH) process developed by David Bressler, a researcher in the Faculty of Agricultural, Life and Environmental Sciences. million from a variety of funders to pursue the research and commercialize the technology.
The new PNNL carbon capture and conversion system brings the cost to capture CO 2 down to about $39 per metric ton. This is the first known demonstration of integrated low-temperature thermocatalytic capture and conversion of CO 2 to methanol in an economically viable CO 2 capture solvent. gal ($470/metric ton), is presented.
By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure).
The contract is expected to make Air France KLM DGF’s largest European airline customer and lays the groundwork for expansion of this commercial relationship as DGF scales up production at the Louisiana and additional planned SAF production plants to be located in the United States and beyond.
Porous carbon based layers have become standard electrode materials in many energy conversion and storage applications. For the proton exchange membrane fuel cells (PEMFCs), an optimal balance of water level is critical for high performance and durability. A paper on their work is published in the journal Applied Surface Science.
The company’s patented technology allows the production of renewable hydrogen as well as the direct conversion of water and CO 2 into raw material for petrochemical products. It enables the production of emission-free renewable hydrogen and conversion of CO 2 into fuels, chemicals and materials.
The first commercial facility is planned to be located in the Malaysian state of Johor. The process also generates value through biochar production, which can be returned to the soil, enabling fertilizer and water retention for increased crop productivity, and more robust plant health. After closing on more than $29.9
This reduces the water content of the reaction to maximize the amount of actual solids that can be loaded and also conserve heat and energy. Compared to other available biomass solvents, THF is well-suited for this application because it mixes homogeneously with water, has a low boiling point (66 ?C) Cai, a Ph.D.
Catalytic hydrothermal gasification is applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. Clean water, which can be re-used to grow more algae. —Douglas Elliott.
Israel-based NewCO2Fuels (NCF), a subsidiary of GreenEarth Energy Limited in Australia, reported completion of stage 1 testing of its proof-of-concept system for the conversion of CO 2 into fuels using solar energy. NewCO2Fuels was founded in 2011 to commercialize a technology developed by Prof. The mixture of CO and H 2 —i.e.,
The specification was approved and published with support from the Commercial Aviation Alternative Fuels Initiative (CAAFI). In the CHJ process (also called hydrothermal liquefaction), clean free fatty acid (FFA) oil from the processing of waste oils or energy oils is combined with preheated feed water and then passed to the CH reactor.
Ethanol conversion to hydrocarbons as a function of temp. Benefits of the catalyst technology include: A single step conversion of ethanol into a hydrocarbon blend stock without the addition of hydrogen. Graph showing hydrocarbon distribution in product stream of 10% ethanol after catalytic conversion over Cu-ZSM-5 at 400° C at 12.5
In a 2012 presentation, the inventors said that the direct conversion process delivers a liquid hydrocarbon fuel yield of ~54-55% at 310°C, with ~6-7% ethylene and ~39% water byproducts, making the technology more cost-effective than previous approaches. Catalytic conversion of to hydrocarbons (2012). —Chaitanya Narula.
In eFuels plants, the feedstock is carbon dioxide, water, and power. The water is converted into hydrogen by means of electrolysis and the synthesis gas is produced from carbon dioxide and hydrogen. The technology and catalyst are in commercial operation in various plants across the globe.
one of the largest publicly traded water, wastewater and natural gas providers in the US, serving approximately 5 million people across 10 states under the Aqua and Peoples brands, is launching a pilot program to electrify its two most popular commercial GM vehicle platforms with the XLH hybrid electric drive system.
Topic Areas include: Characterization of Municipal Solid Waste (MSW) to Enable Production of Conversion-Ready Feedstocks (up to $15M). The importance of any particular MSW characteristic is defined by the conversion technology specifications. Measurement of variability of key MSW characteristics within and across unique MSW streams.
Methanol fuel cell developer and manufacturer Blue World Technologies ( earlier post ) is starting limited production—the first step in commercializing its methanol fuel cell technology. Methanol reforming is a relatively simple process that converts a mix of methanol and water into a hydrogen-rich gas.
One way to mitigate high feedstock cost is to maximize conversion into the bioproduct of interest. This maximization, though, is limited because of the production of CO 2 during the conversion of sugar into acetyl-CoA in traditional fermentation processes. Wiedel, Jennifer Au, Maciek R. Antoniewicz, Eleftherios T.
a global supplier of hydrogen fuel cell-powered commercial vehicles, announced a joint venture to build up to 100 hydrogen hubs across the United States and globally. into locally produced, renewable hydrogen for Hyzon’s fleet of zero-emission commercial vehicles. Raven SR , a renewable fuels company, and Hyzon Motors Inc.,
A team from the University of Houston and Hunan Normal University in China has developed an active and durable oxygen evolution reaction (OER) catalyst for water splitting that meets commercial crtieria for current densities at low overpotentials. to deliver 200 mA cm -2 , unsatisfactory for the commercial requirements of 1.8-2.4
Recent research in electrocatalytic CO 2 conversion points the way to using CO 2 as a feedstock and renewable electricity as an energy supply for the synthesis of different types of fuel and value-added chemicals such as ethylene, ethanol, and propane. —lead author Irina Chernyshova.
Bi 0.73 ) achieved 95% methane conversion at 1065°C in a 1.1-meter Under these conditions, the equilibrium conversion is 98%. When the temperature was reduced to 1040 °C, the CH 4 conversion decreased to 86%. Higher conversions, at higher temperatures, were not possible because of Mg evaporation. —Upham et al.
The largest scale example of the commercial application of this technology is its Secunda plant in Mpumalanga, which converts synthesis gas—a mixture of carbon monoxide (CO) and hydrogen (H 2 )—derived from coal gasification and supplemented by reformed natural gas into 160,000 bbl of products per day.
Researchers in Canada have demonstrated a new photochemical diode artificial photosynthesis system that can enable efficient, unassisted overall pure water splitting without using any sacrificial reagent. overall water splitting reaction. These free charges split water molecules into hydrogen and oxygen. … in neutral (pH?~?7.0)
Researchers at Argonne National Laboratory, Tufts University and Oak Ridge National Laboratory have shown that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, can catalyze the direct conversion of methane to methanol and acetic acid using oxygen and carbon monoxide under mild conditions.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content