This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from SRI International (SRI) are developing a methane-and-coal-to-liquids process that consumes negligible amounts of water and does not generate carbon dioxide. In conventional CTL approaches, energy is supplied by burning a portion of the coal feed, which then produces carbon dioxide.
South Africa state-owned power utility Eskom reports that a design study is currently under way for an underground coal gasification (UCG) demonstration plant, which will include a 250,000 Nm 3 /h gas production plant and a 100 MW to 140 MW gas turbine plant. The coal seam lies between 280 m and 300 m deep. Mining Weekly.
This FOA, issued in August 2017, is a $50-million funding opportunity for projects supporting cost-shared research and development to design, construct, and operate two large-scale pilots to demonstrate transformational coal technologies. Some of these technologies are now ready to proceed to the large-scale pilot stage of development.
million in federal funding to develop conceptual designs of commercially viable technologies that will extract rare earth elements (REEs) from US coal and coal by-product sources. Winner Water Services Inc. The conceptual designs of each project include an option for up to a $2-million feasibility study.
Generation III reactors are evolutionary improvements on the Generation II designs—basically the current fleet of nuclear reactors. Generation IV design are still emerging, and are not expected to be operational before the 2020s. in-containment refuelling water storage tank. million tons of standard coal and emission of 8.16
Coal and coal production waste contain a wide variety of valuable rare earth elements that can be converted into clean energy technology components. The US currently has more than 250 billion tons of coal reserves, more than 4 billion tons of waste coal, and about 2 billion tons of coal ash at various sites across the country.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. Earlier post.).
announced that the Shell-Wison Hybrid Gasification Demonstration Plant has successfully started up in Nanjing, marking the commencement of the demonstration and application phase of the new Shell-Wison hybrid coal gasification technology.
DICE involves converting coal or biomass into a water-based slurry (called micronised refined carbon, MRC) that is directly injected into a large, specially adapted diesel engine. The process has very high conversion efficiency >97% (LCA); he fuel choice determines the carbon footprint. DICE development network.
The National Energy Technology Laboratory (NETL) has released a follow-on study to its 2009 evaluation of the economic and environmental performance of Coal-to-Liquids (CTL) and CTL with modest amounts of biomass mixed in (15% by weight) for the production of zero-sulfure diesel fuel. Earlier post.).
Ignite Energy Resources supercritical water process diagram. IER’s proprietary supercritical water technology (SCW) transforms low-ranked coals, including lignite, directly into higher-valued oils and cleaner coal products. tonnes of high-ranked coal. Source: IER. Click to enlarge. Source: IER. Click to enlarge.
Energy Vault’s advanced gravity energy storage solutions are based on the proven physics and mechanical engineering fundamentals of pumped hydroelectric energy storage, but replace water with custom-made composite blocks, or “mobile masses”, which do not lose storage capacity over time.
The contract award marks China as the site for the first worldwide commercial implementation of the TRIG technology with the goal of producing low-emission, coal-based electricity. TRIG coal gasification technology was co-developed developed by Southern Company, KBR Inc., (Dongguan TMEP) in Guandong Province, Peoples Republic of China.
Borla Performance Industries , a leader in the design and manufacture of stainless steel performance exhaust, has an option to license a novel nanopore membrane technology developed at Oak Ridge National Laboratory (ORNL). The heat recovered could serve to preheat boiler feed water, thus providing an energy savings.
Awardees will receive approximately $16 million to advance the gasification process, which converts carbon-based materials such as coal into syngas for use as power, chemicals, hydrogen, and transportation fuels. Advanced Gasifier and Water-Gas Shift Technologies for Low-Cost Coal Conversion to High-Hydrogen Syngas.
The US Department of Energy (DOE) selected eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency, low-cost carbon dioxide capture from coal-fired power plants. The Energy Department’s $7 million investment—leveraged with recipient cost-share to support approximately $9.4
gasified coal—by eliminating the coking problem. The resulting lower-temperature SOFCs could provide a cleaner, more efficient alternative to conventional power plants for generating electricity from coal reserves. About half of the carbon dioxide is then recirculated back to gasify the coal to coal gas to continue the process.
BG Group has approved implementation of the first phase of a US$15-billion project to convert coal seam gas (CSG) to LNG—the first major commercial project to do so. Total gross discovered coal seam gas reserves and resources presently amount to an estimated 17.3 Coal seam gas and LNG. Source: QCLNG EIS. Click to enlarge.
Using bituminous coal from southern Wyoming, the Medicine Bow facility will produce 11,600 barrels per day of very low sulfur gasoline using GE gasification technology and methanol?to?gasoline ton Carbon Basin coal reserve owned by Arch Coal, which is also an equity investor in the project. gasoline (MTG) technologies.
The US Department of Energy’s (DOE) Office of Fossil Energy (FE) has selected four projects for cost-shared research and development under the funding opportunity announcement (FOA), DE-FOA-0002180, Design Development and System Integration Design Studies for Coal FIRST Concepts.
Australia’s Syngas Limited has engaged Rentech to provide Fischer-Tropsch fuels production preliminary engineering services for Syngas’ proposed commercial scale coal and biomass to liquids (CBTL) fuels facility in Southern Australia, known as the Clinton Project. Additionally, the Clinton coal fluidizes well.
The US Department of Energy has selected 7 projects to participate in the University Coal Research (UCR) program. The projects aim to improve the basic understanding of the chemical and physical processes that govern coal conversion and utilization, by-product utilization, and technological development for advanced energy systems.
The life-cycle water consumption of fuel cell electric vehicles using hydrogen produced from natural gas with steam methane reforming is almost 50% less than the life-cycle water consumption of conventional internal combustion engine vehicles using gasoline, according to a study by researchers at Argonne National Laboratory (ANL).
The Los Angeles Department of Water and Power (LADWP) has taken steps to transition out of the use of coal-fired electricity earlier than mandated by California state law. LADWP currently owns a 21% interest in the 2250 megawatt (MW) Navajo Generating Station, receiving 477 MW of coal-fired power from the plant.
The US DOE is soliciting ( DE-FOA-0001051 ) projects for up to $10 million in awards to target technological advancements to lower the cost of producing hydrogen and/or high-hydrogen syngas from coal for use in 90% carbon capture power generation and/or gasification-based liquid (transportation) fuel production: methanol or diesel.
nuclear and fossil-fueled generating units) in Europe and the United States are vulnerable to climate change due to the combined impacts of lower summer river flows and higher river water temperatures. Compared to other water use sectors (e.g. A study published in Nature Climate Change suggests that thermoelectric power plants (i.e.,
Air Products will acquire Royal Dutch Shell’s Coal Gasification Technology business as well as Shell’s patent portfolio for Liquids (Residue) Gasification. As a leading industrial gas company, Air Products has extended its onsite supply model to use coal gasification to generate synthesis gas (syngas) for major projects.
The feed-stock reduction is achieved primarily by supplementing the process with oxygen and hydrogen produced by water electrolysis units that are powered by clean wind and solar generated electricity. DGF replaces the coal gasification used by others with biomass gasification and natural gas reforming.
Underground coal gasification (UCG) company Linc Energy Ltd. announced the completion and start-up of its fifth underground coal gasifier at Chinchilla, Australia ( earlier post ). Gasifier 5 is 132 meters deep and 820 meters long, making it the longest underground gasifier in the world and the longest designed by Linc Energy to date.
Headwaters direct coal liquefaction process. Headwaters Inc and Axens are forming a strategic alliance to provide a single-source solution for producing synthetic fuels by direct coal liquefaction (DCL) alone or in combination with refinery residues or biomass. Up to 50% more liquid product per ton of coal. Source: Headwaters.
Sasol and General Electric (GE: NYSE)’s GE Power & Water have together developed new technology that will clean waste water from Fischer-Tropsch plants used to produce synthetic fuels and chemicals, while also providing biogas as a by-product for power generation.
Australia’s CSIRO (Commonwealth Scientific and Industrial Research Organization, Australia’s national science agency) and Australia Pacific LNG (a coal seam gas to LNG joint venture between Origin and ConocoPhillips) have launched a new research alliance to support the development of the coal seam gas (CSG) industry.
Natural gas will play a leading role in reducing greenhouse-gas emissions over the next several decades, largely by replacing older, inefficient coal plants with highly efficient combined-cycle gas generation, according to a major new interim report out from MIT. The first two reports dealt with nuclear power (2003) and coal (2007).
Regal Resources Limited, an Australia-based developer of an Underground Coal to Liquids (UCTL) process to convert low rank brown/coal lignite into hydrocarbon and gas products ( earlier post ), has signed a Farm-In Agreement with Greenpower Energy Limited through its wholly owned subsidiary MOL Gippsland Pty Ltd (MOL).
The US Department of Energy (DOE) will award up to $36 million ( DE-FOA-0001791 ) to continue the development of carbon capture technologies to either the engineering scale or to a commercial design, with an eye to reducing fossil fuel power plant emissions. Engineering design is to cover both the carbon capture process and balance of plant.
Australia-based underground coal gasification (UCG) company Linc Energy ( earlier post ) has signed an exclusive agreement with the UK-based alkaline fuel cell technology company AFC Energy Plc and its related company, B9 Coal ( earlier post ). Peter Bond, Linc Energy CEO. Once the 3.5
On a planet aspiring to become carbon neutral, the once-stalwart coal power plant is an emerging anachronism. It is true that, in much of the developing world, coal-fired capacity continues to grow. But in every corner of the globe, political and financial pressures are mounting to bury coal in the past.
The selected projects are intended to improve the economics of IGCC plants and promote the use of the US’abundant coal resources. For example, a 60%-efficient gasification power plant can cut the formation of carbon dioxide by 40% compared to a typical coal combustion plant, the DOE said.
This new solution allows NuScale to support a larger cross-section of customer needs including power for small grids such as for island nations; remote off-grid communities; industrial and government facilities; and coal power replacements that require less power and help customers meet clean air mandates.
The EMS (Earth and Mineral Science) Energy Institute at Penn State has developed a conceptual novel process configuration for producing clean middle-distillate fuels from coal with some algal input with minimal emissions. Principal inputs are coal, water, non-carbon electricity, and make-up solvent. Background.
A comprehensive three-year scientific study into the air, water and soil impacts of hydraulic fracturing (HF) in coal seam gas (CSG) in Queensland, Australia has found little to no impacts on air quality, soils, groundwater and waterways. Source: CSIRO.
The Natural Resources Defense Council (NRDC) issued a press release on Friday saying that Baard Energy had agreed to a settlement entailing their switching from coal as a feedstock for its planned coal/biomass-to-liquids Ohio River Clean Fuels plant ( earlier post ) to natural gas. Earlier post.). —Sierra Club’s Nachy Kanfer.
million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The system will be designed to deliver high-purity hydrogen, suitable for PEM fuel cell use, using FFI’s Metal Membrane Technology (MMT) purification process. A Siemens Energy-led consortium has begun work in Newcastle, UK on a new £3.5
The only by-product is water. Once the feed gases are removed it also quickly reverts to its inert state with zero combustion and pure water as the only other output. Within minutes of the hydrogen interacting with the catalyst, HERO safely reaches temperatures of more than 700 ?C.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content