This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Transform Materials has developed a novel and sustainable microwave plasma reactor process to convert natural gas into high-value hydrogen and acetylene, thereby opening up a new pathway for green chemical manufacturing. Acetylene can be then converted into many derivative chemicals, all possessing high value.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.
A microgrid based on renewable energies with hydrogen-powered fuel cells for emergency and peak power as well as hydrogen combustion engines can meet the special energy requirements of port facilities. The main role in this project, called “enerport II”, is played by fuel cells and mtu hydrogen engines—each with different tasks.
Flow diagram of coal tar hydrogenation process. Researchers in China report the production of gasoline and diesel from coal tar via an optimized catalytic hydrogenation using two serial fixed beds, the first with a hydrofining catalyst of MoNi/?-Al million tons of coal tar was further processed. Click to enlarge.
million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogen fuel cell-electric buses. Ammonia has a high hydrogen density and is readily transportable in bulk. million (US$4.24
UOP LLC, a Honeywell company, has landed its third technology license for its methanol-to-olefins (MTO) technology, which converts methanol from coal into key plastics building blocks. China is the world’s largest producer of coal, accounting for nearly half of global production, according to the US Energy Information Administration.
An Israeli-Australian venture will use solar technology developed at Israel’s Weizmann Institute of Science to reduce carbon dioxide emissions from the burning of brown coal. Jacob Karni, also makes it possible to dissociate water (H 2 O) to hydrogen (H 2 ) and oxygen (O 2 ) at the same time it dismantles the CO 2.
reduced by 100% fossil-free hydrogen instead of coal and coke, with good results. The hydrogen gas used in the direct reduction process is produced by electrolysis of water with fossil-free electricity, and can be used directly or stored for later use. We’ll be converting to electric arc furnace in Oxelösund as early as 2025.
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. Under the terms of the agreement, Energy Vault agreed to provide 1.6
World energy consumption projections expect coal to stay one of the world’s main energy sources in the coming decades, and a growing share of it will be used in CT—the conversion of coal to liquid fuels (CTL). By 2020, CTL is expected to account for 15% of the coal use in China. —Wang et al.
UK-based B9 Coal, established in 2009 with the objective of developing projects combining Underground Coal Gasification (UCG) with Carbon Capture and Storage (CCS) and alkaline hydrogen fuel cells, is bringing together a consortium including WSP Group, AFC Energy and Linc Energy to develop such a project.
Overview of the bluegas catalytic coal methanation process. The projects would be developed using GreatPoint’s proprietary bluegas technology, which utilizes catalytic hydromethanation to create pure hydrogen and substitute natural gas (SNG) that is pipeline-ready in a single-stage gasification process. Click to enlarge.
Researchers from SRI International (SRI) are developing a methane-and-coal-to-liquids process that consumes negligible amounts of water and does not generate carbon dioxide. The syngas is converted into methanol, which is then processed to make transportation fuels—in the case of the DARPA challenge, JP-8 (military distillate fuel).
Awardees will receive approximately $16 million to advance the gasification process, which converts carbon-based materials such as coal into syngas for use as power, chemicals, hydrogen, and transportation fuels. Advanced Gasifier and Water-Gas Shift Technologies for Low-Cost Coal Conversion to High-Hydrogen Syngas.
The Funding Opportunity Announcement ( DE-FOA-0000703 ) for the awards is soliciting applications for R&D in two specific Areas of Interest: laboratory scale liquids production and assessment; and a feasibility study for a coal-biomass to liquids facility. Feasibility Study for a Coal-Biomass to Liquids Facility.
This development is a significant step towards the implementation of CO 2 hydrogenation technology in South Africa. For decades, Sasol has been using its Fischer-Tropsch (FT) technology to convert low-grade coal and gas into synthetic fuels and chemicals.
As part of the IPCEI Hydrogen Program of the European Union (Important Projects of Common European Interest, IPCEI), the German Federal Government and the German Federal States of Baden-Württemberg, Bavaria, and Saarland are funding the Bosch Power Units project. Bosch will receive a grant of €160.7 A hotbox will contain several stacks.
Algae.Tec has signed a deal with Australia’s largest power company to site an algae carbon capture and biofuels production facility alongside a 2640MW coal-fired power station near Sydney. million tonnes of coal per year and delivers power to eastern Australia, from South Australia to Northern Queensland.
Laurus Energy have formed Stone Horn Ridge LLC, a company created to commercialize syngas from underground coal gasification (UCG). The syngas composition depends on the coal geology as well as the process parameters such as operating pressure, outlet temperature and flow.
Ørsted (formerly DONG Energy), Everfuel Europe A/S, NEL Hydrogen A/S, GreenHydrogen AS, DSV Panalpina A/S, Hydrogen Denmark and Energinet Elsystemansvar A/S have been awarded funding of DKK 34.6 The partners will build a 2MW electrolysis plant with appurtenant hydrogen storage. Avedøre Power Station on Avedøre Holme.
The agreement marks the first US purchase by a utility of low-carbon power from a commercial-scale, coal-based power plant utilizing carbon capture. billion plant will receive $450 million in funding from the Clean Coal Power Initiative; of this, $211 million comes from the American Recovery and Reinvestment Act of 2009.
Mascoma will then convert the feedstock to cellulosic ethanol through its proprietary process, which produces lignin as a by-product. Chevron has filed applications for two patents on processes to convert lignin to a hydrocarbon feedstock via hydroprocessing; both applications were published on 3 September 2009. Earlier post.)
has selected Honeywell’s UOP technology to convert methanol into building blocks for chemical products at an existing coal chemical complex in China. China’s Wison (Nanjing) Clean Energy Company Ltd. UOP and Total announced their partnership on this in 2005. Wison (Nanjing) Clean Energy Co.,
Shell Coal Gasification Process. Shell (China) Limited and Shenhua Coal to Liquid and Chemical Co. Shenhua) have agreed to seek opportunities for conducting joint research and development in advanced coal technology. Shenhua Coal to Liquid and Chemical Co. Shenhua Group is the world’s largest coal company.
Rice University researchers and colleagues at Princeton and Syzygy Plasmonics have developed a plasmonic photocatalyst for the direct decomposition of hydrogen sulfide gas into hydrogen and sulfur, as an alternative to the industrial Claus process. A paper on the work appears in ACS Energy Letters.
Scientists from the Max Planck Institutes for Chemical Energy Conversion and Coal Research and from the research group Photobiotechnology at Ruhr-Universität Bochum (RUB) have discovered a way of increasing the efficiency of hydrogen production in microalgae by a factor of five by using a combined metabolic engineering approach.
Left, global light-duty fleet in the electric-favoring case; right, the hydrogen-favoring case. In both electric- and hydrogen-favoring cases, availability of low-carbon electricity and hydrogen prolonged the use of petroleum-fueled ICE vehicles. Top, without CCS and CSP; bottom, with CCS and CSP. Credit: ACS, Wallington et al.
For the first time thyssenkrupp has produced ammonia from steel mill gases, marking the first time in the world that steel mill gases, including the CO 2 they contain, have been converted into ammonia. Steel mill gas comprises 44% nitrogen, 23% carbon monoxide, 21% carbon dioxide, 10% hydrogen and 2% methane.
Headwaters direct coal liquefaction process. Headwaters Inc and Axens are forming a strategic alliance to provide a single-source solution for producing synthetic fuels by direct coal liquefaction (DCL) alone or in combination with refinery residues or biomass. Up to 50% more liquid product per ton of coal. Source: Headwaters.
has entered into an agreement with Clean Coal Ltd., an internationally based company whose technical team is based in the United Kingdom, for the development of an Underground Coal Gasification (UCG) project in Nova Scotia. Clean Coal Ltd. Clean Coal Ltd. Clean Coal Ltd. Stealth Ventures Ltd.
In the new UMass approach, the hydroprocessing increases the intrinsic hydrogen content of the pyrolysis oil, producing polyols and alcohols. The zeolite catalyst then converts these hydrogenated products into light olefins and aromatic hydrocarbons in a yield as much as three times higher than that produced with the pure pyrolysis oil.
gasified coal—by eliminating the coking problem. The resulting lower-temperature SOFCs could provide a cleaner, more efficient alternative to conventional power plants for generating electricity from coal reserves. About half of the carbon dioxide is then recirculated back to gasify the coal to coal gas to continue the process.
GE Energy has signed a technology licensing agreement with Hydrogen Energy (HEI) for a proposed 250-megawatt power plant that would use integrated gasification combined-cycle (IGCC) technology. HEI is a joint venture of BP Alternative Energy and multinational mining company Rio Tinto Hydrogen. Earlier post.).
The US Department of Energy (DOE) has signed a cooperative agreement with Hydrogen Energy California LLC (HECA) to build and demonstrate a hydrogen-powered electric generating facility, complete with carbon capture and storage, in Kern County, Calif. Earlier post.).
Air Products will acquire Royal Dutch Shell’s Coal Gasification Technology business as well as Shell’s patent portfolio for Liquids (Residue) Gasification. As a leading industrial gas company, Air Products has extended its onsite supply model to use coal gasification to generate synthesis gas (syngas) for major projects.
The Australian, Japanese and Victorian governments and a consortium of companies have launched the pilot of an innovative supply chain that will deliver liquefied hydrogen from the Latrobe Valley in Australia to Japan. A liquefaction plant at the Port of Hastings will convert the hydrogen gas into liquefied hydrogen (LH2).
The strategy is centred around two main technology routes, as introduced in the first ArcelorMittal Europe climate action report published earlier this year: The use of hydrogen in DRI-EAF (Direct Reduced Iron - Electric Arc Furnace) and, also, the blast furnace. The expansion of its Smart Carbon route, also utilizing hydrogen.
Hydrogen and recycling are likely to play a central role in reducing emissions from steel production. By 2050, green hydrogen could be the cheapest production method for steel and capture 31% of the market. Converting a significant portion of the fleet to hydrogen would require more DRI plants and more electric furnaces.
The consortium has been collaborating on the project for more than three years, which will consist of 25 gigawatts (GW) of renewable solar and wind energy at full capacity to produce millions of tons of zero-carbon green hydrogen per annum. Green hydrogen is expected by some to grow into a US$2.5-trillion trillion market by.
The European H2FUTURE project consortium, comprising voestalpine, Siemens, VERBUND, and Austrian Power Grid, together with the research partners K1-MET and ECN, officially gave the green light to the construction of a 6 MW “green” hydrogen pilot production plant—the world’s largest—at a voestalpine Linz steel plant.
The EMS (Earth and Mineral Science) Energy Institute at Penn State has developed a conceptual novel process configuration for producing clean middle-distillate fuels from coal with some algal input with minimal emissions. Principal inputs are coal, water, non-carbon electricity, and make-up solvent. Schobert (2015) Click to enlarge.
Aker Carbon Capture and Haldor Topsoe have signed a memorandum of understanding with the intention to offer a complete solution for low-carbon hydrogen production. This process can be applied on emissions from various sources, from gas, coal, cement, refineries, and waste-to-energy through to hydrogen and other process industries.
The US Department of Energy has selected projects by Basin Electric Power Cooperative and Hydrogen Energy International LLC—a joint venture between BP and Rio Tinto ( earlier post )—for up to $408 million in funding from the American Recovery and Reinvestment Act. Post Combustion CO 2 Capture Project.
Unfortunately, no economically feasible reforming catalyst is available for converting diesel and coal-based fuels into hydrogen-rich synthesis gas necessary for use in SOFCs.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content