This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Methanol—a bio-based platform molecule that can be used directly as a fuel or fuel additive, and can also be used to produce bulk chemicals and drop-in fuels—is currently mainly produced from methane and coal via an indirect syngas route. wt% during catalytic conversion of cellulose at 250 °C and 1Mpa H 2 for 10 h.
World energy consumption projections expect coal to stay one of the world’s main energy sources in the coming decades, and a growing share of it will be used in CT—the conversion of coal to liquid fuels (CTL). By 2020, CTL is expected to account for 15% of the coal use in China. —Wang et al.
The Funding Opportunity Announcement ( DE-FOA-0000703 ) for the awards is soliciting applications for R&D in two specific Areas of Interest: laboratory scale liquids production and assessment; and a feasibility study for a coal-biomass to liquids facility. Feasibility Study for a Coal-Biomass to Liquids Facility.
A new assessment of the viability of coal-to-liquids (CTL) technology by researchers from the MIT Joint Program on the Science and Policy of Global Change (JPSPGC) found that without climate policy, CTL has the potential to account for around a third of global liquid fuels by 2050. Credit: Chen et al., 2011 Click to enlarge.
million in federal funding to 32 cost-shared research and development (R&D) projects for advanced coal technologies and research under six separate funding opportunity announcements (FOAs). The first funding opportunity award is for $10 million for ten projects under DE-FOA-0001992, Maximizing the Coal Value Chain.
The US Department of Energy (DOE) has issued a funding opportunity announcement ( DE-FOA-0000784 ) for up to $13 million to support the development of advanced coal gasification systems. AOI 1: Coal Feed Technologies - Low-rank Coal Feed or Coal-woody Biomass Feed Technologies. poplar, pine and hardwoods]).
DICE involves converting coal or biomass into a water-based slurry (called micronised refined carbon, MRC) that is directly injected into a large, specially adapted diesel engine. The process has very high conversion efficiency >97% (LCA); he fuel choice determines the carbon footprint. DICE development network.
UK-based B9 Coal, established in 2009 with the objective of developing projects combining Underground Coal Gasification (UCG) with Carbon Capture and Storage (CCS) and alkaline hydrogen fuel cells, is bringing together a consortium including WSP Group, AFC Energy and Linc Energy to develop such a project.
Awardees will receive approximately $16 million to advance the gasification process, which converts carbon-based materials such as coal into syngas for use as power, chemicals, hydrogen, and transportation fuels. Advanced Gasifier and Water-Gas Shift Technologies for Low-Cost CoalConversion to High-Hydrogen Syngas.
The partners aim to replace coal-fired power plants with hydrogen-ready gas-fired power plants in Germany, and to build production of low carbon and renewable hydrogen in Norway that will be exported through pipeline to Germany. Blue hydrogen in large quantities can make a start, with subsequent conversion into green hydrogen supply.
In a new report, energy, mining and minerals consultancy Wood Mackenzie projects that despite efforts to limit coal consumption and seek alternative fuel options, China’s strong appetite for thermal coal will lead to a doubling of demand by 2030. It is very unlikely that demand for thermal coal in China will peak before 2030.
Startup US Fuel Corporation (USF), which plans to design, build, own and operate scalable facilities near coal mine sites to convert coal into synthetic fuels, will acquire coal-to-diesel intellectual property (IP) that USF co-developed with an executive team consisting of Paul Adams and Steve Luck. Andrew Halarewicz, Sr.
The contract award marks China as the site for the first worldwide commercial implementation of the TRIG technology with the goal of producing low-emission, coal-based electricity. TRIG coal gasification technology was co-developed developed by Southern Company, KBR Inc., (Dongguan TMEP) in Guandong Province, Peoples Republic of China.
The US Department of Energy (DOE) has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects are intended to improve coalconversion and use and will help propel technologies for future advanced coal power systems. DOE Share: $299,998).
Researchers from SRI International (SRI) are developing a methane-and-coal-to-liquids process that consumes negligible amounts of water and does not generate carbon dioxide. In conventional CTL approaches, energy is supplied by burning a portion of the coal feed, which then produces carbon dioxide. HR0011-10-0049. DARPA solicitation.
an emerging natural gas production company which uses proprietary technology to convert both underground and mined low-rank coal to pipeline-quality methane biochemically at large scale and low cost, has raised equity in its second round of financing, led by new investor Khosla Ventures. Ciris Energy, Inc.,
The Mingo County Redevelopment Authority (MCRA) and its partner TransGas Development Systems, LLC will conduct a groundbreaking ceremony on 9 May 2011, to launch the construction phase of the Mingo County coal-to-liquids project, to be called Adams Fork Energy. Earlier post.). Earlier post.)
Researchers from Northwestern University and Princeton University have explored the impact on US air quality from an aggressive conversion of internal combustion vehicles to battery-powered electric vehicles (EVs). coal, oil, natural gas, and biomass). Winter O 3 increases due to reduced loss via traffic NO x. Winter while PM 2.5
Ramaco Carbon is partnering with Oak Ridge National Laboratory to develop new, large-scale processes for making graphite from coal. The conversion of coal to higher value materials, such as graphene, graphite or carbon nanotubes, is of high interest, and a number of researchers have proposed processes.
The National Energy Technology Laboratory (NETL) has released a follow-on study to its 2009 evaluation of the economic and environmental performance of Coal-to-Liquids (CTL) and CTL with modest amounts of biomass mixed in (15% by weight) for the production of zero-sulfure diesel fuel. per gallon increase in fuel price over the coal cases.
The Clean Coal Task Force (CCTF) was created in 2007 by the Wyoming State Legislature to help secure Wyoming’s financial future by preserving the value of coal, an important export from the state. The newly approved projects will receive $8,769,713, the largest single annual funding in the history of the fund.
The projects conducted through this program are geared toward reducing the cost of coalconversion and mitigating the environmental impacts of fossil-fueled power generation. Bio-gasification of Coal to Methane. Lead organization. Description. Montana State University. The Ohio State University.
The US Department of Energy (DOE) has selected nine universities for awards for research projects that will continue to support innovation and development of advanced, lower emission coal technologies. The projects selected for awards include: Improved Alloys. DOE Share: $293,519). Brown University. DOE Share: $300,000).
Using bituminous coal from southern Wyoming, the Medicine Bow facility will produce 11,600 barrels per day of very low sulfur gasoline using GE gasification technology and methanol?to?gasoline ton Carbon Basin coal reserve owned by Arch Coal, which is also an equity investor in the project. gasoline (MTG) technologies.
China’s shift toward alternative fuels in order to cut its reliance on imported oil is creating large opportunities, notably in natural gas vehicles (NGVs) and in the conversion of coal to ethanol, according to a new report from Lux Research. Coal-to-ethanol is on verge of large-scale commercialization. Renewable resources.
The US Department of Energy (DOE) in partnership with the US Air Force has issued a request for information (RFI)— DE-FOA-0000981 —on research & development aimed at greenhouse gas emissions reductions and cost competitiveness of Mil-Spec jet fuel production using coal-to-liquid (CTL) fuel technologies. Information Request.
An Israeli-Australian venture will use solar technology developed at Israel’s Weizmann Institute of Science to reduce carbon dioxide emissions from the burning of brown coal. is now building a solar reactor for the conversion of CO 2 on an industrial scale. The venture has been recently launched in Israel by NewCO2Fuels Ltd.,
has selected Honeywell’s UOP technology to convert methanol into building blocks for chemical products at an existing coal chemical complex in China. It is projected to produce 295,000 metric tons per year of ethylene and propylene for conversion to chemical products. China’s Wison (Nanjing) Clean Energy Company Ltd.
Accelergy Corporation has begun production of a synthetic fuel from coal and biomass, to be evaluated by the United States Air Force (USAF) as the industry benchmark for 100% synthetic jet fuel. The pilot facility will also provide a tool for evaluating new coal and biomass feedstocks as the technology moves towards commercial deployment.
The US Department of Energy (DOE) has issued a funding opportunity announcement ( DE-FOA-0001342 ) for cost-effective CO 2 capture or conversion solutions for coal-relevant applications at low concentrations. Proposed technologies should mitigate CO 2 from coal-relevant gases with CO 2 concentrations of.
The US DOE is soliciting ( DE-FOA-0001051 ) projects for up to $10 million in awards to target technological advancements to lower the cost of producing hydrogen and/or high-hydrogen syngas from coal for use in 90% carbon capture power generation and/or gasification-based liquid (transportation) fuel production: methanol or diesel.
The US Department of Energy (DOE) has selected 8 research projects for funding that will focus on gasification of coal/biomass to produce synthetic gas (syngas) as a pathway to producing power, hydrogen, fuel or chemicals. will blend coal and biomass to develop a feedstock for co-gasification. Clean Coal Briquette Inc.
Clariant and Siemens Fuel Gasification Technology will cooperate in the commercialization of a new, jointly developed sour gas shift (SGS) (sulfur removal) technology for coal gasification. The entrained-flow Siemens Fuel Gasifier (SFG) is able to produce syngas from a wide range of fuels, even for low ranks of coal.
Panda Power Funds has financed the 1,124 megawatt Panda “Hummel Station” power plant—one of the largest coal-to-natural gas power conversion projects in the United States. The plant will be located at the site of the retired Sunbury coal-fired power plant near Shamokin Dam in Snyder County, Pennsylvania.
(SES), a global energy and gasification technology company that provides products and solutions to the energy and chemicals industries, has entered into a Technical Study Agreement with Ambre Energy of Australia to supply a proprietary gasification design to support Ambre’s development of a planned Coal to Liquids Project (ambreCTL).
A Technical Feasibility Study (TFS) for a coal-to-methanol (CTM) plant based on the Arckaringa coal resources in Australia has concluded that CTM could be a viable project capable of augmenting the Bankable Feasibility Study (BFS) for Altona Energy’s Arckaringa Clean Energy CTL (coal-to-liquids) and Power Project in South Australia.
The authors highlight three possible strategies for CO 2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol; syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations; and photochemical production of synthetic fuels. Jiang et al. Kuznetsov and P.
Wison plans to invest in a coal gasification unit to produce syngas per Celanese specs, and Celanese plans to invest approximately US$650 million in an Ethanol Complex using the output from Wison as feedstock and Celanese proprietary technology to produce ethanol for industrial use, and potentially for fuel ethanol. Earlier post.).
million grant from the Commonwealth of Pennsylvania to move forward on the construction of a facility to demonstrate its integrated coal-biomass-to-liquids (CBTL) technology platform ( earlier post ) at Intertek PARC, located at the U-PARC facility in Pittsburgh. Accelergy Corporation has received a $1.3-million Earlier post.)
The Hydrogen Energy Supply Chain ( HESC ) project will convert brown coal from the AGL Loy Yang mine into hydrogen at an adjacent site and then transport the gas by road in high pressure tube trailers to a liquefaction terminal at the Port of Hastings. J-Power will use its gasification technology for gasification of brown coal.
While the new power station will supply 260% more power than the coal plant it replaces, key air emissions will be reduced by approximately 97%. The Hummel Generating Station will also use 97% less water for cooling purposes than the retired coal-fired Sunbury plant.
On a planet aspiring to become carbon neutral, the once-stalwart coal power plant is an emerging anachronism. It is true that, in much of the developing world, coal-fired capacity continues to grow. But in every corner of the globe, political and financial pressures are mounting to bury coal in the past.
Converting CO 2 to usable fuels was the topic of a symposium— CO 2 Conversion: Thermo-, Photo- and Electro-Catalytic —on Sunday at the 246 th National Meeting & Exposition of the American Chemical Society in Indianapolis, Indiana. Recent studies have centered on CO 2 capture, secure storage, and chemical conversions.
The new PNNL carbon capture and conversion system brings the cost to capture CO 2 down to about $39 per metric ton. As described in an open-access paper in the journal Advanced Energy Materials , the new system is designed to fit into coal-, gas-, or biomass-fired power plants, as well as cement kilns and steel plants.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content