This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Scientists at Daegu Gyeongbuk Institute of Science and Technology, Korea, have developed a novel heterostructured photocatalyst using titanium and copper, two abundant and relatively inexpensive metals, for the conversion of CO 2 into CH 4. Apart from its CO 2 conversion capabilities, the proposed photocatalyst has other benefits.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner. Qian Wang et al.
The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). In brief, the Fe–Mn–K catalyst shows a CO 2 conversion of 38.2%
Audi’s latest e-fuels project is participation in a a pilot plant project in Dresden that produces diesel fuel from water, CO 2 and green electricity. The sunfire plant, which operates according to the “power-to-liquid” (PtL) principle, requires carbon dioxide, water and electricity as raw materials.
ReactWell , LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s Oak Ridge National Laboratory to improve energy conversion methods for cleaner, more efficient oil and gas, chemical and bioenergy production. —Brandon Iglesias, inventor of the ReactWell process.
By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure).
The conversion of CO 2 to fuels in these inexpensive water-based systems has shown high faradic efficiencies for reduction of CO 2. The separation of ethanol and other fuel products from water. Aqueous CO 2 electrolysis with base-metal catalysts. to C 2 fuel products such as ethanol.
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million OCOchem transforms recycled CO 2 , water and zero-carbon electricity to produce formic acid, a globally traded commodity chemical and emerging electro-fuel.
A team from the University of Illinois and startup Dioxide Materials has developed an electrocatalytic system for the reduction of CO 2 to CO—a key component of artificial photosynthesis and thus an enabler for the conversion of CO 2 to synthetic fuels—at overpotentials below 0.2 for formation of the “CO2 ? intermediate.
CO can then be reacted with H 2 O via the water?gas As such, development of Bi-based cathodes for conversion of CO 2 to CO would represent an important development for the fields of CO 2 electrocatalysis and renewable energy conversion. Carbon Capture and Conversion (CCC) Fuels Power Generation' Tropsch methods.
Joule, the developer of a direct, single-step, continuous process for the production of solar hydrocarbon fuels ( earlier post ), has extended its solar CO 2 conversion platform to produce renewable gasoline- and jet fuel-range hydrocarbons. Earlier post.).
The process, reported in the ACS journal Energy & Fuels , could leverage a recently reported process, also developed by NRL, to recover CO 2 from sea water. The mechanism of the first stage first produces CO and water. The water formed in the primary reactions negatively influences catalyst activity and product selectivity.
Electrification of the global vehicle fleet, which now totals over 1 billion cars and trucks, or conversion of vehicles to use novel fuels like hydrogen, cannot proceed quickly enough to address the climate crisis. The separation of ethanol and other fuel products from water. —Rob McGinnis. to C 2 fuel products such as ethanol.
Researchers from BASF, Energie Baden-Württemberg AG (EnBW), Heidelberg University and Karlsruhe Institute of Technology (KIT) are seeking to develop a process for the photocatalytic conversion of CO 2 into methanol for use in fuel cells or internal combustion engines. million) over two years.
Israel-based NewCO2Fuels (NCF), a subsidiary of GreenEarth Energy Limited in Australia, reported completion of stage 1 testing of its proof-of-concept system for the conversion of CO 2 into fuels using solar energy. Simultaneously, the same device can dissociate water (H 2 O) to hydrogen (H 2 ) and oxygen (O 2 ). Click to enlarge.
While Ni metal catalyzes the hydrogen evolution reaction (HER) exclusively under CO 2 RR conditions, Ni single atomic sites present a high CO selectivity of 95% under an overpotential of 550 mV in water, and an excellent stability over 20 hours’ continuous electrolysis. The current density can be scaled up to more than 50 mA cm?2
One-pot electrolytic process produces H 2 and solid carbon from water and CO 2. In this study, they focused on the electrolysis component for STEP fuel, producing hydrogen and graphitic carbon from water and carbon dioxide. 2014), “A One-Pot Synthesis of Hydrogen and Carbon Fuels from Water and Carbon Dioxide,” Adv.
Researchers at the US Naval Research Laboratory (NRL) led off a day-long symposium on advances in CO 2 conversion and utilization being held at the 238 th American Chemical Society (ACS) national meeting, which began today in Washington, DC. Earlier post.). Earlier post.). Robert Dorner. The electrochemical reduction of carbon dioxide.
Evonik and Siemens Energy commissioned a pilot plant—sponsored by the German Federal Ministry of Education and Research (BMBF)—that uses carbon dioxide and water to produce chemicals. It consists of a CO electrolyzer, developed by Siemens Energy, a water electrolyzer and the bioreactor with Evonik’s know-how.
Toshiba Corporation has developed a new technology that uses solar energy directly to generate carbon compounds from carbon dioxide and water, and to deliver a viable chemical feedstock or fuel with potential for use in industry. Mechanism of the technology. Source: Toshiba. Click to enlarge.
One way to mitigate high feedstock cost is to maximize conversion into the bioproduct of interest. This maximization, though, is limited because of the production of CO 2 during the conversion of sugar into acetyl-CoA in traditional fermentation processes. Wiedel, Jennifer Au, Maciek R. Antoniewicz, Eleftherios T.
Recent research in electrocatalytic CO 2 conversion points the way to using CO 2 as a feedstock and renewable electricity as an energy supply for the synthesis of different types of fuel and value-added chemicals such as ethylene, ethanol, and propane. Their paper is published in Proceedings of the National Academy of Sciences (PNAS).
Calculated potential needed to electrolyze carbon dioxide or water. The STEP process occurs at solar energy conversion efficiency greater than attainable by photovoltaics alone. cycle completion by preheating of the electrolysis reactant through heat exchange with the energetic electrolysis products. Licht, 2009.
In those areas, we can use this technology to capture CO2 from the air and then combine that with the hydrogen generated from solar energy in order to produce liquid fuel. In his previous work, he’s developed membranes capable of capturing CO 2 while filtering-out other molecules like water. —Miao Yu.
The researchers and engineers at ETH Zurich have developed innovative processes that make it possible to extract CO 2 from the atmosphere and, together with water and with the help of concentrated sunlight, convert it into a synthesis gas that can be used to produce jet fuel.
Researchers from SRI International (SRI) are developing a methane-and-coal-to-liquids process that consumes negligible amounts of water and does not generate carbon dioxide. Water consumption less than 235 kg/barrel. Top: Conventional F-T process. Bottom: SRI process. Click to enlarge. Production cost of JP8 less than $3.00/gallon.
The joint project, which started two years ago, aims at converting CO 2 into biomass or directly into secondary raw materials with the help of micro-organisms bred to explore innovative CO 2 conversion and synthesis pathways. by sewage water, the production of food or refinery processes. More than €2 million (US$2.54
Our results with formic acid demonstrate that the systematic implementation of modern solvent techniques in continuous reactor equipment makes it possible to perform conversions that cannot be achieved under conventional conditions. In laboratory experiments, stable operation was demonstrated for over 200 hours.
When illuminated by light, these QDs drive the renewable production of different biofuels and chemicals using carbon-dioxide (CO 2 ), water, and nitrogen (from air) as substrates. The microbes, which lie dormant in water, release their resulting product to the surface, where it can be skimmed off and harvested for manufacturing.
The utilization of the full spectrum of sunlight in STEP results in a higher solar energy efficiency than other solar conversion processes. organic electrosynthesis of benzoic acid from benzene without over-oxidizing into CO 2.
Molybdate is relatively abundant and stable in air and water. reacts with triethylsilane in acetonitrile under an atmosphere of CO 2 to produce formate (69% isolated yield) together with silylated molybdate (quantitative conversion to [MoO 3 (OSiEt 3 )] ? , 2 -CO 3 )] 2? 50% isolated yield) after 22 hours at 85 °C.
Because so much energy is lost turning steam back into water in the Rankine cycle, at most a third of the power in the steam can be converted into electricity. In comparison, the Brayton cycle has a theoretical conversion efficiency upwards of 50%. The recuperator improves the overall efficiency of the system.
volts versus the reversible hydrogen electrode) in CO-saturated alkaline water. For the Nature study, Kanan and Li built an electrochemical cell: two electrodes placed in water saturated with carbon monoxide gas. The challenge was to find a cathode that would reduce carbon monoxide to ethanol instead of reducing water to hydrogen.
The new PNNL carbon capture and conversion system brings the cost to capture CO 2 down to about $39 per metric ton. This is the first known demonstration of integrated low-temperature thermocatalytic capture and conversion of CO 2 to methanol in an economically viable CO 2 capture solvent. Creating methanol from CO2 is not new.
First, the vehicle’s flue gases in the exhaust pipe are cooled down and the water is separated from the gases. The researchers’ calculations show that a truck using 1 kg of conventional fuel could produce 3kg of liquid CO 2 , and that the conversion does not involve any energy penalty. —François Maréchal.
Bi 0.73 ) achieved 95% methane conversion at 1065°C in a 1.1-meter Under these conditions, the equilibrium conversion is 98%. When the temperature was reduced to 1040 °C, the CH 4 conversion decreased to 86%. Higher conversions, at higher temperatures, were not possible because of Mg evaporation. —Upham et al.
The findings could spur progress on developing a variety of materials and designs for electrochemical carbon dioxide conversion systems. There are several ways to do such conversions, including electrochemical, thermocatalytic, photothermal, or photochemical processes—each with their own problems or challenges.
Broadly, GTL processing using natural gas as feedstock entails three stages: reforming of methane to produce syngas (a mixture of H 2 and CO); conversion of the syngas using F-T synthesis to produce a broad range of hydrocarbons; and upgrading of the F-T products to naphtha, diesel, liquefied petroleum gas, etc., —Zhang et al.
reported a major step forward in its development of renewable fuels, achieving direct microbial conversion of carbon dioxide into hydrocarbons via engineered organisms, powered by solar energy. In addition, Joule’s process requires just marginal, non-arable land, no crops and no fresh water. Joule Biotechnologies, Inc. Earlier post.)
In ammonia plants, hydrogen is generated by steam-methane reforming (SMR) and water-gas shift (WGS) and, subsequently, is purified for the high-pressure ammonia synthesis. Ammonia, produced via the Haber-Bosch (HB) process, is globally the leading chemical in energy consumption and carbon dioxide emissions.
Twelve’s jet fuel, produced using its carbon transformation technology in partnership with Fischer-Tropsch conversion experts Emerging Fuels Technology ( earlier post ), is a fossil-free fuel that offers a drop-in replacement for petrochemical-based alternatives without any changes to existing plane design or commercial regulations.
The team calculated that an area equal to only 4% of the Sahara Desert would be sufficient to bring atmospheric CO 2 concentrations back to pre-industrial levels in ten years, and that a wind speed of 1 km per hour would be sufficient to deliver that CO2 to those STEP (solar thermal electrochemical process (STEP) CNT plants ( earlier post ).
Instead of using H 2 , direct conversion of CO 2 with CH 4 (dry reforming of methane, DRM) to liquid fuels and chemicals (e.g. Moreover, it is a cheap carbon source which can increase the atom utilization of CO 2 hydrogenation due to the stoichiometric ratio of C and O atoms, as well as reducing the formation of water. …
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content