Remove Charging Remove MIT Remove Sodium
article thumbnail

Total Signs Research Agreement with MIT to Develop New Stationary Batteries for Solar Power; Smaller-Scale Version of All-Liquid Metal Battery Work Supported by ARPA-E

Green Car Congress

Total has signed a research agreement with the Massachusetts Institute of Technology (MIT) to develop new stationary batteries that are designed to enable the storage of solar power. This agreement valued at $4 million over five years is part of the MIT Energy Initiative (MITEI), which Total joined as a member in November 2008.

MIT 199
article thumbnail

U Waterloo team identifies key reaction in sodium-air batteries; implications for improving Li-air

Green Car Congress

Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which has been proposed by some as the “holy grail” of electrochemical energy storage.

Sodium 150
article thumbnail

New MIT metal-mesh membrane could solve longstanding problems with liquid metal displacement batteries; inexpensive grid power storage

Green Car Congress

A new metal mesh membrane developed by researchers at MIT could advance the use of the Na–NiCl 2 displacement battery, which has eluded widespread adoption owing to the fragility of the ?"-Al through the MIT Energy Initiative. Al 2 O 3 membrane. A paper describing the development is published in the journal Nature Energy.

MIT 150
article thumbnail

Sadoway and MIT team demonstrate calcium-metal-based liquid metal battery

Green Car Congress

MIT professor Donald Sadoway and his team have demonstrated a long-cycle-life calcium-metal-based liquid-metal rechargeable battery for grid-scale energy storage, overcoming the problems that have precluded the use of the element: its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Click to enlarge.

article thumbnail

Researchers devise electrode architectures to prevent dendrite formation in solid-state batteries

Green Car Congress

It’s been known that dendrites form more rapidly when the current flow is higher—which is generally desirable in order to allow rapid charging. At the ordinary temperatures that the battery operates in, “it stays in a regime where you have both a solid phase and a liquid phase,” in this case made of a mixture of sodium and potassium.

Battery 199
article thumbnail

MIT-led team devises new approach to designing solid ion conductors; implications for high-energy solid-state batteries

Green Car Congress

Researchers led by a team from MIT, with colleagues from Oak Ridge National Laboratory (ORNL), BMW Group, and Tokyo Institute of Technology have developed a fundamentally new approach to alter ion mobility and stability against oxidation of lithium ion conductors—a key component of rechargeable batteries—using lattice dynamics.

MIT 170
article thumbnail

Advances in the conversion efficiency of thermoelectric materials

Green Car Congress

A collaboration including researchers from Boston College, MIT, the University of Virginia and Clemson University have achieved a peak ZT (thermoelectric figure of merit) of 0.8 Two separate research collaborations have recently reported advances in the efficiency of thermoelectric materials in converting heat to electricity. at ~800 K.