Remove Charging Remove Lithium Air Remove Store
article thumbnail

IIT, Argonne team designs Li2O-based Li-air battery with solid electrolyte; four-electron reaction for higher energy density

Green Car Congress

Researchers at the Illinois Institute of Technology (IIT) and US Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery with a solid electrolyte. A lithium-air battery based on lithium oxide (Li 2 O) formation can theoretically deliver an energy density that is comparable to that of gasoline.

Li-ion 418
article thumbnail

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Diagram of the STAIR (St Andrews Air) cell. Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Lithium-air batteries use a catalytic air cathode in combination with an electrolyte and a lithium anode. Click to enlarge.

article thumbnail

IBM Almaden Lab Exploring Lithium-Air Batteries for Next-Generation Energy Storage

Green Car Congress

General schematic of a lithium-air battery. The team plans to explore rechargeable Lithium-Air systems, which could offer 10 times the energy capacity of lithium-ion systems. Lithium-ion rechargeable (secondary) batteries are based on a pair of intercalation electrodes. Adapted from Ogasawara et al.

article thumbnail

MIT team synthesizes all carbon nanofiber electrodes for high-energy rechargeable Li-air batteries

Green Car Congress

The carbon nanofiber electrodes are substantially more porous than other carbon electrodes, and can therefore more efficiently store the solid oxidized lithium (Li 2 O 2 ) that fills the pores as the battery discharges. Source: Mitchell et al. Click to enlarge. A team at MIT, led by Carl V. —Mitchell et al. ” Resources.

MIT 268
article thumbnail

DOE Awards 24M Hours of Supercomputing Time to Investigate Materials for Li-Air Batteries

Green Car Congress

The US Department of Energy (DOE) has awarded 24 million hours of supercomputing time to investigate materials for developing lithium air batteries, capable of powering a car for 500 miles on a single charge. Argonne is committed to developing lithium air technologies. Earlier post.)

article thumbnail

China team outlines 5 key areas of future research to realize Li-air batteries

Green Car Congress

In an open access paper published in the International Journal of Smart and Nano Materials , researchers from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences review significant developments and remaining challenges of practical Li–air batteries and the current understanding of their chemistry. —Zhang et al.

Li-ion 285
article thumbnail

St. Andrews team elucidates behavior of carbon cathodes in Li-air batteries; the importance of the synergy between electrode and electrolyte

Green Car Congress

Carbon is seen as an attractive potential cathode material for aprotic (non-aqueous) Lithium-air batteries, which are themselves of great interest for applications such as in electric vehicles because of the cells’ high theoretical specific energy. Carbon promotes electrolyte decomposition during discharge and charge in a Li?O

Carbon 240