This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
With the creation of a 3-D nanocone-based solar cell platform, a team led by Oak Ridge National Laboratory’s Jun Xu has boosted the light-to-power conversion efficiency of photovoltaics by nearly 80 percent. With this approach at the laboratory scale, Xu and colleagues were able to obtain a light-to-power conversion efficiency of 3.2%
Smaller Ioxus cells offer a power density of 22-28 kW/kg, and larger cells offer densities of 12-15 kW/kg, said Chad Hall, COO of Ioxus. Another application could provide “instant heat” to heat up the catalytic converters in vehicles. Energy densities for the cells are typically around 2-4 Wh/kg.
Housed within a vehicle’s catalytic converter, the Eco-lytic catalyst support fiber is designed to replace the existing catalytic converter or add to existing systems in order to enhance emission reduction, consume fewer precious metals and raw materials, and drive lower energy usage through vehicle weight reduction.
—Professor Chad A. Liliang Huang, Peng-Cheng Chen, Mohan Liu, Xianbiao Fu, Pavlo Gordiichuk, Yanan Yu, Chris Wolverton, Yijin Kang, Chad A. Mirkin, co-corresponding author. Identifying new materials is essential for driving technological development. The global catalysis market is expected to reach $34.3 1800884115.
Another major difference is that the intensity of x-ray scattering increases with the electron density of a material; light elements such as hydrogen and lithium thus make very little contribution to scattering. Neutrons, on the other hand, can obtain an appreciable scattering signal from light elements. Blade height is ~76 mm.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content