This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
At the hubs, which can be built at or near landfills, Raven SR will convert mixed and multiple organic wastes, including municipal solid waste, greenwaste, food waste, medical, paper, etc. This permits the control of the rotary reformer when there is water content or chemical makeup variation in the feedstock, such as in MSW.
The Rice lab of chemist James Tour has successfully extracted valuable rare earth elements (REE) from waste at yields high enough to resolve issues for manufacturers while boosting their profits. The activation strategy is feasible for various wastes including coal fly ash, bauxite residue, and electronic waste.
With this zero-waste car, the team wants to show that waste can be a valuable material with a multitude of applications. Luca, the world’s first Zero-Waste car. During the UBQ conversion process, the unsorted residual waste stream is reduced into its more basic natural components. Photo by Bart van Overbeeke.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
Black liquor is the waste byproduct from the kraft pulping process after pulping is completed. Veolia Group designs and provides solutions for water, waste and energy management. Using the A-Recovery+ concept from ANDRITZ, the plant has a capacity to produce 6.3
Waste tires have been used mainly for recovering energy sources; only small proportions of the carbon black contained in these tires are recycled, since mineral ash accounts for around 20% of its content. Around three kilograms of carbon black—also known as industrial soot—are found in a standard car tire.
UC Riverside (UCR) engineers have developed a way to recycle PET (polyethylene terephthalate) plastic waste, such as soda or water bottles, into a nanomaterial useful for energy storage. Then, using an electrospinning process, they fabricated microscopic fibers from the polymer and carbonized the plastic threads in a furnace.
Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed a novel process for the production of hydrogen using various types of biomass, including lignin, as an efficient alternative to water oxidation as an electron source. Conventionally, water is considered a cheap and clean source of electrons; 2H 2 O ?
I’ve been seeing the b t full page ads for Icelandic Glacial water in the print edition of the Los Angeles Times for months now and every time I do they p**s me off. . Times hadn’t delivered an actual bottle of this snake oil water right along with my newspaper last week. .
Lithium Australia NL reported that its wholly owned subsidiary VSPC Ltd has successfully produced Li-ion battery cathode material, and Li-ion batteries (LIBs), from tri-lithium phosphate produced directly from mine waste using the SiLeach process. LFP and batteries from waste. SiLeach background.
Energy Vault’s advanced gravity energy storage solutions are based on the proven physics and mechanical engineering fundamentals of pumped hydroelectric energy storage, but replace water with custom-made composite blocks, or “mobile masses”, which do not lose storage capacity over time. barrel per ton of feedstock.
Since forming in 2013, Argent Materials, a San Francisco Bay Area recycler of concrete and asphalt, and supplier of aggregate such as crushed rock, entry, cutback, sand, backfill and base rock for construction projects, has diverted more than a billion pounds of waste from local landfills. <>/div>. Our experience has been positive.
Carbon Recycling International (CRI) and Johnson Matthey (JM) have agreed on a long-term exclusive catalyst supply agreement for the use of JM’s KATALCO methanol catalysts in CRI’s Emissions-To-Liquids (ETL) CO 2 -to-methanol plants. Hydrogen can also be processed from by-product hydrogen available in some industrial waste streams.
The US Environmental Protection Agency (EPA) issued a final rule that helps create a consistent national framework to ensure the safe and effective deployment of carbon capture and sequestration (CCS) technologies. compliance with applicable transportation regulations), will be excluded from EPA’s hazardous waste regulations.
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al. —Shannon Boettcher.
Raven SR, a US-based renewable fuels company ( earlier post ), plans to build a waste-to-hydrogen production facility in Aragón, Spain, following the opening of its subsidiary Raven SR Iberia in Zaragoza, announced earlier this month. About 15% of feedstock is converted into a solid bio-carbon which can potentially be sold.
The pilot plant was designed and tested by researchers of Karlsruhe Institute of Technology (KIT) and the Research Centre of the German Technical and Scientific Association for Gas and Water (DVGW). Biogas facilities produce renewable gas mainly by fermenting biological waste. The technology can also be applied to power-to-gas systems.
The US Department of Energy (DOE) released a new report that frames an integrated challenge and opportunity space around the water-energy nexus for DOE and its partners and lays the foundation for future efforts. Present day water and energy systems are tightly intertwined. Source: DOE. Click to enlarge.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
By 2050, Cummins is targeting net-zero carbon emissions. Generate 25% less waste in facilities and operations as a percent of revenue. Reduce absolute water consumption in facilities and operations by 30%. In 2014, the company released a global environmental sustainability plan with facility goals in water, waste, and energy.
The minimum 10-year deal will reduce lifecycle emissions by up to 340,647 metric tons of carbon dioxide per year, beginning with the first expected SAF deliveries in 2026. These changes eliminate the need for carbon sequestration and reduce the system’s feed-stock handling costs and complexity.
Capturing this wastecarbon then allows for algae to be cultivated into a variety of biofuels and bioproducts. The FOA has two topic areas: Topic Area 1, funded by BETO, is to support the development of algal biofuels through the utilization of carbon dioxide generated via fermentation (e.g.,
The facility will filter 4,000 metric tons of carbon dioxide from the air and mineralize it underground. With direct air capture technology, carbon dioxide is extracted from the ambient air and air free of CO 2 is returned to the atmosphere. The carbon dioxide is thus permanently removed from the atmosphere.
These plants pump hot water from geothermal deposits and use it to generate electricity. By some estimates, as much as 15,000 metric tons per year of lithium carbonate could be recovered from a single geothermal power plant in the Salton Sea area of California—one of the most mineral-rich brine sources in the United States.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
A Northwestern Engineering-led team has developed a highly porous smart sponge that selectively soaks up oil in water. Currently used solutions include burning the oil, using chemical dispersants to breakdown oil into very small droplets, skimming oil floating on top of water and/or absorbing it with expensive, unrecyclable sorbents.
Research suggests that animal leather requires the emission of between 2-12 kg carbon dioxide equivalent per kg of animal leather produced and can vary greatly depending on where animals are raised, how tanning is achieved, etc. waste’ cork powder). waste’ cork powder).
a waste-to-fuels company, closed a $20-million strategic investment from Chevron USA, ITOCHU, Hyzon Motors and Ascent Hydrogen Fund. Raven SR plans to build modular waste-to-green hydrogen production units and renewable synthetic fuel facilities initially in California and then worldwide. Raven SR Inc., Earlier post.). 22 CCR § 66260.10
Aker Carbon Capture and Haldor Topsoe have signed a memorandum of understanding with the intention to offer a complete solution for low-carbon hydrogen production. Aker Carbon Capture’s proprietary carbon capture process uses a mixture of water and organic amine solvents to absorb the CO 2.
reports that it has achieved full conversion ( 99% + ) of king grass cellulosic material to water soluble sugars on a repeatable basis. Blue Biofuels, Inc. This conversion occurs with a reaction time of less than one minute. This achievement was accomplished with the company’s upgraded 4 th generation CTS 2.0
DE-FOA-0002423 ) Topic Areas ins the FOA support DOE’s Bioenergy Technologies Office’s (BETO’s) objectives to reduce the minimum selling price of drop-in biofuels, lower the cost of biopower, and enable high-value products from biomass or waste resources. Improvements in productivity with traditional carbon dioxide (CO 2 ) supply.
The tenth competition under the Low Carbon Vehicles Innovation Platform’s integrated delivery program (IDP), IDP10 is targeting the building of an integrated low-carbon-vehicle innovation chain, from the science base, through collaborative R&D to fleet-level demonstration. Engines Vehicle Systems Waste Heat Recovery'
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million AirCapture develops on-site, modular technology that captures CO 2 from the air using waste heat from manufacturing plants, enabling customer operations to go carbon neutral and even negative.
million to 16 water infrastructure projects. Modern technology has the potential to reduce energy use in aging water infrastructure, particularly in wastewater treatment, which demands up to 2% of domestic electricity use each year. The US Department of Energy (DOE) is awarding $27.5
The water-atomized steel powder delivers mechanical properties superior to conventional metal manufacturing techniques, paving the way for advances in the use of 3-D printing technology for metal parts. —Rio Tinto Iron and Titanium Managing Director Stéphane Leblanc.
Water and oxygen are the only by-products. The waste heat given off during methanation is used as process energy in the adjacent biogas plant, significantly increasing overall efficiency. At this facility, microorganisms use water (brackish, salt or wastewater) sunlight and carbon dioxide to produce high-purity fuels.
The benchmarks include: Food loss and waste: Advance our work toward the United States’ goal to reduce food loss and waste by 50% in the United States by the year 2030. Water Quality: Reduce nutrient loss by 30 percent nationally by 2050.
This renewable hydrogen was used to manufacture fuels with a low carbon footprint, such as gasoline, diesel, or kerosene for aviation. The biomethane used as raw material was obtained from urban solid waste. In the port of Bilbao, near the Petronor Industrial Complex, Repsol plans to build a plant to generate biogas from urban waste.
The parties are willing to discuss collaboration opportunities in low-carbon products and renewable energies development. The Memorandum of Understanding also includes opportunities for collaboration in the research and technology development for waste valorization, CO 2 biofixaton and its re-use for sustainable mobility.
The shortlisted proposals include plants aiming to produce jet fuel from: Combining carbon dioxide captured from the atmosphere with hydrogen from water; Alcohol derived from wastes; Everyday household and commercial black bag rubbish; and. LanzaTech UK Ltd and Carbon Engineering. alfanar Energy Ltd. Lanzatech UK Ltd.
The Federal Court declined to vacate the ROD and ordered the BLM to consider one issue under the mining law relating to the area designated for waste storage and tailings and did not impose any restrictions expected to impact the construction timeline. Major construction contracts awarded include: Lithium Carbonate and Purification.
Hydrous ethanol (also sometimes known as azeotropic ethanol) typically ranges from 186 proof (93% ethanol, 7% water) to 192 proof (96% ethanol, 4% water). Earlier post.). It’s a good, fast way to adapt technology into an existing engine by manufacturing a retrofit kit that can be installed on current engines or on newer engines.
The development project has the potential to reduce carbon emissions in the alumina refining process significantly. Electricity sourced from renewable energy would power compressors to turn waste vapor into steam, which would then be used to provide refinery process heat.
Raven SR, a renewable fuels company; Chevron New Energies, a division of Chevron USA; and Hyzon Motors are collaborating to commercialize operations of a green waste-to-hydrogen production facility in Richmond intended to supply hydrogen fuel to transportation markets in Northern California.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content