This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38
jointly announced that, toward the achievement of carbon neutrality, they will take on the challenge of expanding fuel options through the use of internal combustion engines at the (three-hour) Super Taikyu Race in Okayama on 13-14 November. Participating in races using carbon-neutral fuels. Kawasaki Heavy Industries, Ltd.,
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
Methanol–water reforming could prove to be a promising solution for hydrogen production/transportation in stationary and mobile hydrogen applications. MoC via carbon bridge bonds, forming a Ni 1 –C x motif on the carbide surface. Such Ni 1 –C x motifs can effectively stabilize the isolated Ni 1 sites over the ?-MoC 0c10776.
Canada-based Carbon Engineering Ltd. (CE) CE) has received equity investment from two global energy companies: Oxy Low Carbon Ventures, LLC (OLCV), a subsidiary of Occidental Petroleum Corporation; and Chevron Technology Ventures (CTV), the venture capital arm of Chevron Corporation.
As the world looks to quickly decarbonize transportation and industry, hydrogen demand is expected to increase rapidly, from $130 billion today to $2.5 There is an accompanying need to develop new low-cost and low-carbon technologies for hydrogen production. T in 2025, according to the Hydrogen Council.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting.
Researchers at Argonne National Laboratory have conducted life cycle analyses (LCAs) for battery-grade lithium carbonate (Li 2 CO 3 ) and lithium hydroxide monohydrate (LiOH•H 2 O) produced from Chilean brines (Salar de Atacama) and Australian spodumene ores. This information will help us achieve our goal of being carbon neutral by 2030.
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( the ocean and surface waters) that received their CO 2 directly from ambient air. DE-FOA-0002481 ). Temporal Changes.
However, most air transport, military, shipping, and long-distance freight applications remain challenging for batteries because of their limited energy density. Together, these applications leave a substantial fraction of transportation energy usage dependent on chemical fuels. —Zhao et al. Zhao et al. C or higher.
A team of researchers from Canada and the US has developed a system that quickly and efficiently converts carbon dioxide into simple chemicals via CO 2 electrolysis. The electrode architecture enables production of two-carbon products such as ethylene and ethanol at current densities just over an ampere per square centimeter.
Qiang Xu of Southern University of Science and Technology (SUSTech) have developed a promising method for carbon capture and storage using a single-crystalline guanidinium sulfate-based clathrate salt. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. Xiang et al.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. The post-combustion outlet gas is more easily separated into water and CO 2 to the pipeline, thereby lowering the electricity costs of grids with high levels of VRE.
FlyZero is the UK’s Aerospace Technology Institute (ATI) project aiming to realize zero-carbon emission commercial aviation by 2030. Funded by the Department for Business, Energy and Industrial Strategy, the project FlyZero began in early 2021 as an intensive research project investigating zero-carbon emission commercial flight.
The facility will filter 4,000 metric tons of carbon dioxide from the air and mineralize it underground. With direct air capture technology, carbon dioxide is extracted from the ambient air and air free of CO 2 is returned to the atmosphere. The carbon dioxide is thus permanently removed from the atmosphere.
Reintroducing airships into the world’s transportation mix could contribute to lowering the transport sector’s carbon emissions and can play a role in establishing a sustainable hydrogen based economy, according to a new IIASA-led study. The open-access paper is published in the journal Energy Conversion and Management: X.
The remaining carbon dioxide is stored in the tank and reused in onshore methanol production. According to the European Environment Agency (EEA), maritime transport is responsible for more than 3% of the total carbon emissions in the European Union. The researchers at Fraunhofer developed a ceramic membrane coated with carbon.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., SOECs can be used for direct electrochemical conversion of steam (H 2 O), carbon dioxide (CO 2 ), or both into hydrogen (H 2 ), carbon monoxide (CO), or syngas (H 2 +CO), respectively.
Airbus and a number of major airlines—Air Canada, Air France-KLM, easyJet, International Airlines Group, LATAM Airlines Group, Lufthansa Group and Virgin Atlantic—have signed Letters of Intent (LoI) to explore opportunities for a future supply of carbon removal credits from direct air carbon capture technology.
Shipping emissions form a significant part of the commodity supply chain’s carbon footprint, particularly for those commodities reliant on the mass transport of low-grade ores and concentrates. Roskill has analyzed the trend in carbon intensity of shipping using spodumene concentrate as an example. Regulatory background.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
CO 2 and water are extracted directly from ambient air via an adsorption/desorption process. At the heart of the solar reactor is a ceramic structure made of cerium oxide, which enables a two-step reaction—the redox cycle—to split water and CO 2 into syngas.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. The awardees are: LanzaTech, Inc.
Meeting jet fuel specifications is an appropriate target to validate that highperformance transportation fuels can indeed be produced from a broad range of residue and waste streams via hydrothermal liquefaction. The decarbonization of the transportation sector will require large volumes of renewable fuels.
Southwest Research Institute and The University of Texas at San Antonio (USTA) are collaborating to combine two catalytic processes into a single reactor, with the overall goal of recycling carbon from COCO 2 2 to produce low-cost hydrocarbon fuels.
Our work shows that protonic membranes can make hydrogen from ammonia, natural gas and biogas so efficiently that hydrogen fuel cell cars will have lower carbon footprint than electric cars charged from the electricity grid. Clark et al.
Starfire Energy, a Colorado-based developer of modular chemical plants for the carbon-free production of ammonia and hydrogen, has closed a major funding round. Proceeds will be used to advance the development of commercial-scale applications to decarbonize ammonia production and unlock its potential as a zero-carbon energy carrier.
As the heavy-duty transportation industry seeks greener alternatives to combustion engines, HT-PEM fuel cells promise a clean, efficient alternative. HT-PEM fuel cells have potential to revolutionize the heavy-duty transportation industry. —Rod Borup, Los Alamos program manager for Fuel Cells and Vehicle Technology.
Building on the company’s expertise in low-carbon ammonia production, clean ammonia will be manufactured using innovative technology to achieve at least a 90% reduction in CO 2 emissions. Geismar makes two grades of ammonia—conventional “gray ammonia” and low-carbon blue ammonia. Canada-based Nutrien Ltd. Source: Nutrien.
physically moving the macroalgae between deep nutrient-rich water at night and shallow depths within the photic zone during the day to optimize growth. 13 C values suggesting that the depth-cycled kelp were not nitrogen-deficient and assimilated nutrients from deep water. The researchers used a depth-cycling approach—i.e.,
Hyundai Motor Group will collaborate with the Saudi Arabian Oil Company (Aramco) and King Abdullah University of Science and Technology (KAUST) jointly to research and develop an advanced fuel for an ultra lean-burn, spark-ignition engine that aims to lower the overall carbon dioxide emissions of a vehicle.
Green hydrogen is produced through the electrolysis of water with electricity generated from zero-carbon sources; only oxygen is emitted during the process. The facility will use a new 300 megawatt zero-carbon solar farm to power 120 megawatts of Plug Power’s state-of-the-art PEM electrolyzers.
The method makes green ammonia from air, water and renewable electricity and does not require the high temperatures, high pressure and huge infrastructure currently needed to produce this essential compound. Once we generated that intermediary in water, designing a selective catalyst and scaling the system became significantly easier.
The researchers started by analyzing the economics of hydrogen-, nitrogen-, and carbon-based fuels made by carbon-neutral pathways in a post-fossil world in which only water, air, and renewable electricity are available for fuel synthesis. Source-to-tank cost comparison of carbon-neutral transportation fuels.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Carbon sequestration adds cost and plant complexity on top of the existing H-B technology.
We expect low-carbon fuel policies to continue to expand globally and drive demand for renewable fuels, and to that end, we are applying our liquid fuels expertise to continue to expand our long-term competitive advantage in low-carbontransportation fuels with the expansion of DGD. The current estimated construction cost is $1.45
Water Quality: Reduce nutrient loss by 30 percent nationally by 2050. Renewable Energy: Increase the production of renewable energy feedstocks and increase biofuel production efficiency and competitiveness to achieve market-driven blend rates of 15% of transportation fuels in 2030 and 30% of transportation fuels by 2050.
There is growing potential for hydrogen to be used in transport, heating, industry and power generation. Both green hydrogen and blue hydrogen—methane reforming coupled with carbon capture technology—are likely to play a role in the energy future as demand expands. Blue and green hydrogen are extremely complementary.
In a first step, this hydrogen is to substitute part of the carbon in the existing blast furnaces, later on it is to be used in new direct reduction plants. It also has a connection to the existing natural gas network, which in the future could also be used for the transport of hydrogen.
project for industrial-scale production of green hydrogen via the electrolysis of water using ?renewable Electrolysis splits water into hydrogen and oxygen gases. energy, this produces ‘green’ hydrogen, without generating direct carbon emissions. ?Hydrogen renewable power, producing zero emissions. operational by 2024.
Audi Hungaria is thus the second of five Audi sites (after Audi Brussels) to achieve a neutral carbon balance, according to the company. We have a clear aim: that all Audi sites will have carbon-neutral operation by 2025. The remaining heat is generated through natural gas, with carbon neutrality assured thanks to bio-gas certificates.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content