This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Vulcan Energy Resources will collaborate with DuPont Water Solutions,a leader in water filtration and purification, to test and to scale up Direct Lithium Extraction (DLE) solutions for Vulcan’s Zero Carbon Lithium extraction process. Earlier post.). Stringfellow and Patrick F.
A fast, green and one-step method for producing porous carbon spheres—a component for carbon capture technology and for new ways of storing renewable energy—has been developed by Swansea University researchers. Carbon spheres range in size from nanometers to micrometers. Credit: ESRI, Swansea University.
Researchers from the University of Birmingham have designed a novel adaptation for existing blast furnaces that could reduce CO 2 emissions from the steelmaking industry by nearly 90%. If implemented in the UK alone, the system could deliver cost savings of £1.28 billion in 5 years while reducing overall UK emissions by 2.9%.
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.
Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. Led by Environmental Resources Management Limited (ERM). HyNet – low carbon hydrogen plant.
A joint research team from City University of Hong Kong (CityU) and collaborators have developed a stable artificial photocatalytic system that is more efficient than natural photosynthesis. The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light.
and Waseda University have started testing in Japan of a jointly developed recycling process that efficiently recovers high-purity rare-earth compounds from electrified vehicle motor magnets. Nissan Motor Co., The testing is aimed at enabling practical application of the new process by the mid-2020s. The REEs are then recovered from the slag.
Scientists at Friedrich Schiller University in Jena, together with colleagues from Boston University (BU) and Wayne State University (WSU), have now succeeded in preventing dendrite formation and thus at least doubling the lifetime of a lithium metal battery. Here, the use of an ultrathin (?1.2
American Battery Technology Company (ABTC) ( earlier post ) announced results of its third-party Qualified Person (QP)-audited Inferred Resource Report that details the analysis of its lithium deposit at its Tonopah Flats Lithium Project in Nevada. The inferred resources report concludes that Tonopah Flats may hold an estimated 15.8
We estimate the carbon footprint of food-miles by using a global multi-region accounting framework. The complexity of the food system has made it challenging to measure how much carbon dioxide in the atmosphere is a direct result of the system’s emissions, particularly those from transportation.
Professor Yutaka Amao of the Osaka City University Artificial Photosynthesis Research Center and Ryohei Sato, a 1 st year Ph.D. student of the Graduate School of Science, have shown that the catalyst formate dehydrogenase reduces carbon dioxide directly to formic acid. However, until now the details of how this happened were unclear.
Yavuz of King Abdullah University of Science and Technology (KAUST), Prof. Bo Liu from University of Science and Technology of China (USTC), and Prof. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. Xiang et al. Nguyen, Cafer T. 2023.101383
The ceramic membrane reactor also separates carbon dioxide more efficiently, enabling the greenhouse gas to be easily transported and sequestered. The process also has a low carbon footprint. The team has also demonstrated that the process can be scaled up for commercial application. Clark Daniel et al.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. However, the electrocatalytic formation of products with two or more carbon atoms (C 2+ ) is very challenging. These could then be burned as needed. Credit: Angewandte Chemie. and Xiong, Y.
New research led by Mohammad Masnadi, assistant professor of chemical and petroleum engineering at the University of Pittsburgh Swanson School of Engineering, offers a closer look at the relationship between decreasing demand for oil and a resilient, varied oil market—and the carbon footprint associated with both.
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique selectively to produce methane, carbon monoxide or formic acid from carbon dioxide and water.
Jacobson, professor of civil and environmental engineering at Stanford University, suggests that carbon capture technologies are inefficient and increase air pollution. All sorts of scenarios have been developed under the assumption that carbon capture actually reduces substantial amounts of carbon.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A) —Saadi et al.
The new catalyst contains cobalt interspersed with nitrogen and carbon. Here we report an atomically dispersed Co and N co-doped carbon (Co–N–C) catalyst with a high catalytic oxygen reduction reaction activity comparable to that of a similarly synthesized Fe–N–C catalyst but with a four-time enhanced durability. —Yuyan Shao.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel. —Leung et al.
Virginia Tech researchers, in collaboration with Pacific Northwest National Laboratory, have discovered that key parts of the global carbon cycle used to track movement of carbon dioxide in the environment are not correct, which could significantly alter conventional carbon cycle models.
“Blue” hydrogen—produced through steam methane reforming (SMR) of natural gas or coal gasification, but with CO 2 capture and storage—is being described as having low or zero carbon emissions. Our analysis assumes that captured carbon dioxide can be stored indefinitely, an optimistic and unproven assumption. Energy Sci Eng.
Our work shows that protonic membranes can make hydrogen from ammonia, natural gas and biogas so efficiently that hydrogen fuel cell cars will have lower carbon footprint than electric cars charged from the electricity grid. The result is a thermally balanced process that makes hydrogen with near zero energy loss. Clark et al.
Researchers from Rice, UCLA and the University of California, Santa Barbara (UCSB), describe the low-energy, low-temperature syngas production process in a paper in Nature Energy. Syngas is a mix of carbon monoxide and hydrogen gas that can be made from coal, biomass, natural gas and other sources. —Linan Zhou. Martirez, J.M.P.,
This study, done in collaboration between NTU and the Chinese University of Hong Kong, showed that a 0.1 g/m 3 ) increment of black carbon is associated with a 12% increase in LADC incidence globally. Black carbon is a pollutant that is classified as under PM 2.5. micrograms per cubic meter (?g/m In North America, a 0.1 ?g/m
By uprooting carbon trapped in soil, wild pigs (feral swine), are releasing around 4.9 million metric tonnes of carbon dioxide annually across the globe, the equivalent of 1.1 million cars, according to a new study by an international team led by researchers from The University of Queensland and The University of Canterbury.
Researchers at Korea University have developed high-performance, textile-based electrodes for watersplitting (WSE); the non-noblemetal-based electrodes can generate a large amount of hydrogen with low overpotentials and high operational stability. —Mo et al. 2 and a low cell voltage of 1.70
Researchers at Drexel University have stabilized a rare monoclinic ?-sulfur sulfur phase within carbon nanofibers that enables successful operation of Lithium-Sulfur (Li-S) batteries in carbonate electrolyte for 4000 cycles. AN open-access paper on their work is published in Communications Chemistry. —Pai et al.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
Researchers at Toyohashi University of Technology in Japan have developed an active sulfur material and carbon nanofiber (S-CNF) composite material for all-solid-state Li-sulfur batteries using a low-cost and straightforward liquid phase process. Schematic images and electron microscope photograph of sulfur-carbon composites (top).
Now, researchers at Michigan Technological University have demonstrated a carbonate-superstructured solid fuel cell (CSSFC) in which in situ generation of superstructured carbonate in the porous samarium-doped ceria layer creates a unique electrolyte with ultrahigh ionic conductivity of 0.17 S⋅cm −1 at 550 °C. . … 2208750119
Researchers at Illinois Institute of Technology (IIT), with colleagues at the University of Pennsylvania and the University of Illinois at Chicago have developed an electrolyzer capable of converting carbon dioxide into propane in a manner that is both scalable and economically viable. Resources Esmaeilirad, M.,
Researchers from Chalmers University of Technology, in collaboration with KTH Royal Institute of Technology in Stockholm, have produced a structural battery that performs ten times better than all previous versions. It contains carbon fiber that serves simultaneously as an electrode, conductor, and load-bearing material.
The 70% sustainable-material tire includes 13 featured ingredients across nine different tire components, including: Carbon black is included in tires for compound reinforcement and to help increase their life and has traditionally been made by burning various types of petroleum products.
Researchers from London South Bank University (LSBU), School of the Built Environment and Architecture, are investigating the use of metal hydrides to absorb, release and store hydrogen for fuel cell buses. The impact of carbon materials on the hydrogen storage properties of light metal hydrides.” EP/T022760/1. EPSRC funding award.
Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. To capture as much carbon as possible, you want the longest chain hydrocarbons. Chains with eight to 12 carbon atoms would be the ideal. —Zhou et al.
San Juan River-Raton-Black Mesa Basin (Arizona, Colorado and New Mexico): New Mexico Institute of Mining and Technology plans to determine the rare earth elements and critical minerals resource potential in coal and related stratigraphic units in the San Juan and Raton basins in New Mexico. DOE Funding: $1,499,999. DOE Funding: $1,483,787.
in close collaboration with GTI and The University of Texas at Austin, has launched a US Department of Energy project, Demonstration and Framework for H2@Scale in Texas and Beyond. The team will assess available resources, prospective hydrogen users, and delivery infrastructure, such as existing pipelines that supply hydrogen to refineries.
A study by researchers at CU Boulder and Edinburgh Napier University finds that high-density, low-rise environments such as those found in Paris are the optimal urban form when looking to reduce greenhouse gas emissions over their whole life cycle. There is a growing belief that building taller and denser is better. —Jay Arehart.
Using an inexpensive polymer called melamine, researchers from UC Berkeley, Texas A&M and Stanford have created a cheap, easy and energy-efficient way to capture carbon dioxide from smokestacks. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption.
University of Delaware engineers have demonstrated an effective way to capture 99% of carbon dioxide from the ambient air feed to an hydroxide exchange membrane fuel cell (HEMFC) air using a novel electrochemical system powered by hydrogen. Source: University of Delaware.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content