This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
As a result, Argent has offset more than 97 million pounds of carbon from the atmosphere and removed a half-million pounds of trash from the streets of Oakland, California. Now, Argent has switched its fleet from petroleum diesel to Neste MY Renewable Diesel. We absolutely love the renewable nature of this product. <>/div>.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. and Hitachi, Ltd.
Vulcan Energy Resources will collaborate with DuPont Water Solutions,a leader in water filtration and purification, to test and to scale up Direct Lithium Extraction (DLE) solutions for Vulcan’s Zero Carbon Lithium extraction process. Earlier post.). Francis Wedin, Managing Director. Stringfellow and Patrick F.
A fast, green and one-step method for producing porous carbon spheres—a component for carbon capture technology and for new ways of storing renewable energy—has been developed by Swansea University researchers. Carbon spheres range in size from nanometers to micrometers. Credit: ESRI, Swansea University.
EIT InnoEnergy, the European innovation engine for sustainable energy, announced a partnership with Vulcan Energy Resources Limited (Vulcan), a start-up lithium exploration company, to produce the world’s first completely carbon-neutral lithium in Germany. As a result, the carbon footprint of the production process could even be negative.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Generation 2 moves the Haber-Bosch process to renewable sources of hydrogen.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
Darling and Valero jointly announced that their 50/50 joint venture, Diamond Green Diesel (DGD), has received approval from both companies’ Boards of Directors to proceed with the construction of the renewable diesel production facility to be located at Valero’s Port Arthur, Texas refinery. The current estimated construction cost is $1.45
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Alongside hydrogen generation from water, the multi-disciplinary research team is investigating photochemical conversion of carbon dioxide into synthetic fuel.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – low carbon hydrogen plant. Contract value: £3.12 million (US$4.1 Contract value: £7.48
and HCS Group GmbH, a long-time customer of Gevo, have signed a project memorandum of understanding (MOU) to develop and to build a renewable hydrocarbon facility at HCS Group’s site located in Speyer, Germany, which would utilize Gevo’s low-carbon sustainable aviation fuel (SAF) technology: Alcohol-to-Jet Synthetic Paraffinic Kerosene.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting. 202300951
The Jadar project would support the evolution of Rio Tinto—one of the world’s largest miners—into a chemical producer to make battery-grade lithium carbonate, a critical mineral used in large-scale batteries for electric vehicles and storing renewable energy. This is a significant moment for the lithium industry.
In a commentary in the journal Joule , Rob McGinnis, founder and and CEO of Prometheus , a company that is developing technology to remove carbon dioxide from the air and turn it into fuels, discusses the technology advances that could lead to the potential price-competitiveness of renewable gasoline and jet with fossil fuels.
Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convert carbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity. Methanol is a promising renewable fuel that can be adapted to the current liquid fuel infrastructure.
BMW i Ventures has invested in Prometheus Fuels ( earlier post ), a company removing CO 2 from the air and turning it into zero-net carbon gasoline that it will sell at gas stations, at a price that competes with fossil fuels, starting as early as this year. The separation of ethanol and other fuel products from water. 2020.01.002.
million for the next phase of Gigastack, a new renewable hydrogen project, as part of the Department for Business, Energy and Industrial Strategy (BEIS) Hydrogen Supply Competition. Producing hydrogen has traditionally been associated with high carbon emissions, but by using renewable electricity—e.g., Earlier post.).
The LHM was produced from Vulcan’s sorption pilot plant, located at a geothermal renewable energy plant in the Upper Rhine Valley in Germany, with downstream electrolysis processing offsite, as per Vulcan’s planned commercial Zero Carbon Lithium Project. Earlier post.). 2 O and very low impurities. 2 O and very low impurities.
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique selectively to produce methane, carbon monoxide or formic acid from carbon dioxide and water.
Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed a novel process for the production of hydrogen using various types of biomass, including lignin, as an efficient alternative to water oxidation as an electron source. Conventionally, water is considered a cheap and clean source of electrons; 2H 2 O ?
Texas-based fuel company Nacero ( earlier post ) will build its second low- and zero-carbon fuels plant in Newport Township, Pennsylvania. The new manufacturing facility will produce low- and zero-lifecycle carbon footprint gasoline blendstock made from natural gas and renewable natural gas.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. Flexible Oxy-Fuel Combustion for High-Penetration Variable Renewables - $717,658. The US Department of Energy announced $11.5 8 Rivers Capital.
Raven SR plans to build modular waste-to-green hydrogen production units and renewable synthetic fuel facilities initially in California and then worldwide. This permits the control of the rotary reformer when there is water content or chemical makeup variation in the feedstock, such as in MSW. Raven SR Inc., Earlier post.).
The Australian Renewable Energy Agency (ARENA) is awarding Alcoa of Australia $8.8 million) toward testing the potential use of renewable energy in a Mechanical Vapor Recompression (MVR) process for alumina refining. The development project has the potential to reduce carbon emissions in the alumina refining process significantly.
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( the ocean and surface waters) that received their CO 2 directly from ambient air. DE-FOA-0002481 ).
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. This is a game-changer for both nuclear energy and carbon-free hydrogen production for numerous industries. Earlier post.) Prairie Island.
The technology developed by the UBC researchers—thermal methane cracking (TMC)—can produce up to 200 kilograms of hydrogen a day using natural gas, without using water, while reducing or eliminating greenhouse gas emissions. SMR still emits a significant amount of carbon dioxide and uses large quantities of water and energy.
In addition to hydrogen, other potential renewable fuels are being studied for future applications, and Wärtsilä engines are already capable of combusting 100% synthetic carbon-neutral methane and methanol. Hydrogen as part of the renewable electricity system of the future.
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. Depending on feedstock carbon content, DGF produces up to 3.6
The minimum 10-year deal will reduce lifecycle emissions by up to 340,647 metric tons of carbon dioxide per year, beginning with the first expected SAF deliveries in 2026. These changes eliminate the need for carbon sequestration and reduce the system’s feed-stock handling costs and complexity. —Christopher J.
Carbon Recycling International (CRI) and Johnson Matthey (JM) have agreed on a long-term exclusive catalyst supply agreement for the use of JM’s KATALCO methanol catalysts in CRI’s Emissions-To-Liquids (ETL) CO 2 -to-methanol plants. Hydrogen can also be processed from by-product hydrogen available in some industrial waste streams.
UK-based ULEMCo has worked with Yorkshire Water to produce what is believed to be the first water tanker anywhere to operate on hydrogen fuel. tonne bowser has been converted from a standard truck to use hydrogen dual fuel, an approach that allows fleet managers to transition more quickly to low carbon operation.
One path to achieving this is with renewable synthetic fuels (e-fuels). Bosch outlines seven reasons why renewable synthetic fuels should be part of tomorrow’s mobility mix: Time. Renewable synthetic fuels have long since left the basic research phase. Then add carbon. Finally, combine CO? a liter (US$5.00 to US$5.84
Libertine says that free-piston range-extender engines can offer the efficiency of fuel cells, the durability of conventional engines and achieve carbon reductions using renewable fuels. This technology enables improved cold start performance using wet or ‘hydrous’ bioethanol fuel, a blend of 90% bioethanol and 10% water (E90W10).
Ultra Safe Nuclear Corporation (USNC), a US-based vertical integrator of nuclear technologies and services, Hyundai Engineering and SK E&C are teaming up to conduct research and development for carbon-free hydrogen production. The company is also pursuing a project to convert green hydrogen into ammonia or methanol.
The ambition is to generate one-third of its revenue from renewable energy projects and low-carbon solutions by 2025, and two-thirds by 2030. The blue crude process will use renewable electricity, water and CO 2 as feedstocks. The process starts when water vapor is broken down into hydrogen and oxygen.
UGI Corporation has entered into a 15-year agreement with California-based technology developer Vertimass to utilize their catalytic technology to produce renewable fuels from renewable ethanol in the US and Europe. The technology enables flexible production of the renewable fuels to align with regional market demand.
project for industrial-scale production of green hydrogen via the electrolysis of water using ?renewable renewable power, producing zero emissions. This will be powered by renewable energy generated by an Ørsted offshore ? Electrolysis splits water into hydrogen and oxygen gases. When powered by renewable ?energy,
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
Renault Group and Vulcan Energy Resources , a lithium developer targeting carbon-neutral lithium production ( earlier post ), have signed a lithium offtake term sheet. Vulcan’s Zero Carbon Lithium process flow sheet. Vulcan aims to produce both renewable geothermal energy and lithium hydroxide, from the same deep brine source.
Bridgestone Americas has produced a run of demonstration tires made with 75% recycled and renewable materials (38% renewable, 37% recycled content), including synthetic rubber made with recycled plastics and natural rubber harvested from hevea and guayule grown domestically. Multiple materials are ISCC PLUS certified.
physically moving the macroalgae between deep nutrient-rich water at night and shallow depths within the photic zone during the day to optimize growth. An open-access paper on their work appears in the journal Renewable and Sustainable Energy Reviews. The researchers used a depth-cycling approach—i.e., —Ginsburg et al.
Synthetic fuels are a decisive factor in energy transition and the use of renewable energies. In other words, we will be electrifying the entire system for propulsion and energy purposes, including the fuel, by producing it with renewable energies in a climate neutral. —Andreas Schell, CEO of Rolls-Royce Power Systems.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content