This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Icelandair.
Biofuels producer Renewable Energy Group joined Iowa State University (ISU) at the BioCentury Research Farm (BCRF) to mark the start of a new hydrotreater pilot plant. REG converts waste and byproduct fats and oils into biodiesel and renewable diesel.
in close collaboration with GTI and The University of Texas at Austin, has launched a US Department of Energy project, Demonstration and Framework for H2@Scale in Texas and Beyond. The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy.
A fast, green and one-step method for producing porous carbon spheres—a component for carbon capture technology and for new ways of storing renewable energy—has been developed by Swansea University researchers. Carbon spheres range in size from nanometers to micrometers. at 0 °C and 2.9 at 0 °C and 2.9
Researchers from the University of Birmingham have designed a novel adaptation for existing blast furnaces that could reduce CO 2 emissions from the steelmaking industry by nearly 90%. If implemented in the UK alone, the system could deliver cost savings of £1.28 billion in 5 years while reducing overall UK emissions by 2.9%. Kildahl et al.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
Ricardo has developed a hydrogen-fueled research engine which could offer a renewable, economic and durable technology solution to accelerate zero-carbon emissions in heavy duty trucks, off-highway machines and marine vessels.
Vulcan Energy Resources will collaborate with DuPont Water Solutions,a leader in water filtration and purification, to test and to scale up Direct Lithium Extraction (DLE) solutions for Vulcan’s Zero Carbon Lithium extraction process. Earlier post.). Stringfellow and Patrick F.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Generation 2 moves the Haber-Bosch process to renewable sources of hydrogen.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – low carbon hydrogen plant. Contract value: £3.12 million (US$4.1 Contract value: £7.48
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique selectively to produce methane, carbon monoxide or formic acid from carbon dioxide and water.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. Flexible Oxy-Fuel Combustion for High-Penetration Variable Renewables - $717,658. Colorado State University. The US Department of Energy announced $11.5
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new study by researchers at Portland State University (PSU) and Vanderbilt University.
On 26 July, the first flue gas from the natural gas power plant, the Shepard Energy Center in Calgary, Canada, was directly transformed by the C2CNT process ( earlier post ) into carbon nanotubes. Carbon nanotubes grown by C2CNT directly from carbon dioxide (SEM and TEM imaging). Left and center. Earlier post.).
Researchers from Newcastle University in the UK have engineered Escherichia coli bacteria to capture carbon dioxide using hydrogen gas to convert it into formic acid. coli, hydrogenating carbon dioxide into an organic acid,” said Dr. Sargent. “We The key is for a microbe to use formate as its sole carbon source.
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
The US Department of Energy (DOE) has selected Arizona State University to lead the seventh Clean Energy Manufacturing Innovation Institute. EPIXC is funded through the Office of Energy Efficiency and Renewable Energy’s Industrial Efficiency and Decarbonization Office.
Danish Minister for Transport Trine Bramsen, Aalborg municipal government representatives, and European media were invited to witness the first test runs of Geely methanol vehicles on Danish roads and visit the e-methanol production facility at Aalborg University.
Siemens Energy, Duke Energy and Clemson University have teamed up to study the use of hydrogen for energy storage and as a low- or no-carbon fuel source to produce energy at Duke Energy’s combined heat and power plant located at Clemson University in South Carolina.
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( DOE supports the search for carbon removal solutions at both the basic and applied science levels. DE-FOA-0002481 ).
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. However, the electrocatalytic formation of products with two or more carbon atoms (C 2+ ) is very challenging. These could then be burned as needed. Credit: Angewandte Chemie. and Xiong, Y.
The work was funded by Co-Optima, an R&D collaboration between DOE, nine national laboratories, several universities and industry organizations. High-performance renewable fuels (HPFs) are an alternative to conventional petroleum fuels that could greatly reduce the carbon footprint of internal combustion engines. Background.
There is a high degree of variability in the carbon intensity of hydrogen production, even using the same technologies or pathways. The creation and adoption of these technical protocols will help build and harmonize the hydrogen market, contextualize climate solutions, advance transparency and support global trade in low-carbon hydrogen.
Jacobson, professor of civil and environmental engineering at Stanford University, suggests that carbon capture technologies are inefficient and increase air pollution. All sorts of scenarios have been developed under the assumption that carbon capture actually reduces substantial amounts of carbon.
Rolls-Royce intends to support research into green fuels in the Lausitz region of eastern Germany together with the State of Brandenburg, Brandenburg University of Technology Cottbus and other industrial partners. Synthetic fuels are a decisive factor in energy transition and the use of renewable energies.
A consortium comprising Engie Solutions, Siemens Gas and Power, Centrax, Arttic, German Aerospace Center (DLR) and four European universities is implementing the HYFLEXPOWER project funded by the European Commission under the Horizon 2020 Framework Program for Research and Innovation (Grant Agreement 884229).
Researchers in China led by a team from Fudan University have demonstrated the electrochemical reduction of CO 2 toward C 2+ alcohols with a faradaic efficiency of ~70% using copper (Cu) catalysts with stepped sites. C 2+ alcohols are desirable due to their high energy densities and large global market capacities.
Mexico-based global construction materials company CEMEX is partnering with integrated chemicals and energy company Sasol ecoFT and renewable energy company ENERTRAG to combine CO 2 with hydrogen to produce sustainable aviation fuel. To reach carbon neutrality, these emissions must be captured, stored, or repurposed in some way.
The US Department of Energy (DOE) announced $9 million in funding to six projects developing technology to model the low-carbon intermodal freight transportation system of the future. Award amount: $1,500,000) University of Tennessee, Knoxville will develop a cognitive digital twin for the US intermodal freight transportation system.
VTT Technical Research Centre of Finland and Lappeenranta University of Technology (LUT) are beginning testing of the Soletair demo plant, which uses air-captured carbon dioxide to produce renewable fuels and chemicals. Phase 1: Renewable energy. Direct air capture (DAC) is the carbon source of the SOLETAIR project.
New hydrogen production technology developed at the University of British Columbia (UBC) will be tested in a $7-million project between UBC, the government of Alberta and Alberta utility company ATCO. SMR still emits a significant amount of carbon dioxide and uses large quantities of water and energy. Image: MéridaLabs.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
A University at Buffalo-led research team has developed an efficient platinum group metal (PGM)-free catalyst for the oxygen reduction reaction (ORR) in PEM fuel cells that consists of atomically dispersed nitrogen-coordinated single Mn sites on partially graphitic carbon (Mn-N-C). and Harbin Institute of Technology.
Researchers at Korea University have developed high-performance, textile-based electrodes for watersplitting (WSE); the non-noblemetal-based electrodes can generate a large amount of hydrogen with low overpotentials and high operational stability. —Mo et al. 2 and a low cell voltage of 1.70
Lloyd’s Register (LR) and the University Maritime Advisory Services (UMAS) have published their latest assessment of the current and future fuels available to shipping to help define the optimum solutions as the maritime industry seeks to reduce greenhouse gas emissions.
Wärtsilä’s X-Ahead project is aimed at developing deep expertise of both the technical and business potential of Power-to-X, which will be used to promote a carbon-neutral economy for Finland. It will also act as a base for defining Wärtsilä’s role in this field as part of the global transition to carbon-neutral solutions.
Researchers at the Karlsruhe Institute of Technology (KIT) and the University of Toronto have proposed a method enabling air conditioning and ventilation systems to produce synthetic fuels from CO 2 and water from the ambient air. Envisioned modular, on-site renewable hydrocarbon synthesis system based on CO 2 capture from thin air.
The strategy focuses on new powertrains including advanced diesel, natural gas, hydrogen engines, hybrids, battery electric, and fuel cells along with an increased use of low carbon fuels and renewable electricity and related infrastructure. gCO 2 e/MJ. gCO 2 e/MJ.
Hyundai Motor Group will collaborate with the Saudi Arabian Oil Company (Aramco) and King Abdullah University of Science and Technology (KAUST) jointly to research and develop an advanced fuel for an ultra lean-burn, spark-ignition engine that aims to lower the overall carbon dioxide emissions of a vehicle.
The new companies are focused on creating electrochemical systems that can help reduce carbon emissions in hard-to-decarbonize sectors and represent the program’s fourth cohort. Applications include green hydrogen production, hydrogen fuel cells and carbon capture and utilization (CCU).
in 2007 to exceed 14% of the 2016-level worldwide GHGE by 2040, accounting for more than half of the current relative contribution of the whole transportation sector, according to a new study from McMaster University in Canada. —Belkhir and Elmeligi (2018).
ExxonMobil and Global Thermostat signed a joint development agreement to advance technology that can capture and concentrate carbon dioxide emissions from industrial sources, including power plants, and the atmosphere. ExxonMobil and Global Thermostat are also exploring opportunities to identify economic uses for captured carbon dioxide.
However, there is a growing need to control energy flows intelligently in order to make optimum use of electricity from renewable sources. In this way, electricity from renewable sources can be tapped and stored as it becomes available.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content