This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). The process is constrained by the (low) cost of electricity. —Johnson et al.
There is an accompanying need to develop new low-cost and low-carbon technologies for hydrogen production. Aurora Hydrogen is scaling its proprietary and highly efficient microwave pyrolysis technology to produce hydrogen and solid carbon from natural gas without generating CO 2 emissions or consuming water.
Researchers at Stanford University, with colleagues at Oak Ridge National Laboratory and other institutions, have developed a nickel-based electrocatalyst for low-costwater-splitting for hydrogen production with performance close to that of much more expensive commercial platinum electrocatalysts. V with good stability.
James Muckerman at the US Department of Energy’s (DOE) Brookhaven National Laboratory (BNL) have developed a new class of high-activity, low-cost, non-noble metal electrocatalyst that generates hydrogen gas from water. The result becomes this well-balanced Goldilocks compound—just right. —James Muckerman.
Heliogen’s AI-enabled concentrated solar energy system is designed to create carbon-free steam, electricity, and heat from abundant and renewable sunlight. When combined with Bloom’s proprietary solid oxide, high-temperature electrolyzer, hydrogen can be produced 45% more efficiently than low-temperature PEM and alkaline electrolyzers.
Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%. It utilizes water and sunlight to get chemical fuels.
Canada-based Carbon Engineering Ltd. (CE) CE) has received equity investment from two global energy companies: Oxy LowCarbon Ventures, LLC (OLCV), a subsidiary of Occidental Petroleum Corporation; and Chevron Technology Ventures (CTV), the venture capital arm of Chevron Corporation.
Using an inexpensive polymer called melamine, researchers from UC Berkeley, Texas A&M and Stanford have created a cheap, easy and energy-efficient way to capture carbon dioxide from smokestacks. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – lowcarbon hydrogen plant. Contract value: £3.12 million (US$4.1
By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure). Heldebrant, D.,
AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulfuric acid. First, scalability: AQDS contains only the Earth-abundant atoms carbon, sulphur, hydrogen and oxygen, and can be inexpensively manufactured on large scales. —ARPA-E Program Director John Lemmon.
Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at lowcost are required. We decided we needed to develop a new chemistry if we were going to make low-cost batteries and battery electrodes for the power grid. —Colin Wessells.
A commercial Pt/C cathode-assisted, core–shell Co@NC–anode water electrolyzer delivers 10 mA cm ?2 V—70 mV lower than that of the IrO 2 –anode water electrolyzer. In electrocatalytic water splitting, oxygen gas generates in the anode due to the oxygen evolution reaction (OER). Researchers at S. 2 at a cell voltage of 1.59
Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. The photoreactors have a low level of complexity, are readily manufacturable via mass fabrication techniques in polymers, and are easy to adapt to diverse photocatalysts.
Chemists from Emory University and the Paris Institute of Molecular Chemistry have developed a stable and fast homogeneous water oxidation catalyst (WOC), considered a crucial component for generating hydrogen using only water and sunlight, that is easily prepared from readily available salts and oxides of earth abundant elements.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. The post-combustion outlet gas is more easily separated into water and CO 2 to the pipeline, thereby lowering the electricity costs of grids with high levels of VRE.
The use of 3D printing allows construction of light-weight, low-cost electrolyzers and the rapid prototyping of flow field design. Porous gas diffusion layers (GDL), often made of titanium or carbon which transfer current from the flow plates and promote the release of the product gases from the electrolysis reaction.
A team of researchers in Australia has developed a Janus nanoparticle catalyst with a nickel–iron oxide interface and multi-site functionality for a highly efficient hydrogen evolution reaction with a comparable performance to the benchmark platinum on carbon catalyst. Janus particles feature surfaces with two or more distinct properties.)
Scientists from Stanford University, SLAC National Accelerator Laboratory and the Technical University of Denmark have identified a new nickel-gallium catalyst that converts hydrogen and carbon dioxide into methanol at ambient pressure and with fewer side-products than the conventional catalyst. You want to make methanol, not carbon monoxide.
Researchers at Wakayama University in Japan have produced a mixture of hydrogen and carbon monoxide gas by irradiating a mixture of carbon powder and distilled water with intense nanosecond laser pulses at room temperature. The carbon or charcoal powders were dispersed in distilled water at a ratio of 25.8
Energy Vault’s advanced gravity energy storage solutions are based on the proven physics and mechanical engineering fundamentals of pumped hydroelectric energy storage, but replace water with custom-made composite blocks, or “mobile masses”, which do not lose storage capacity over time. barrel per ton of feedstock.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., SOECs can be used for direct electrochemical conversion of steam (H 2 O), carbon dioxide (CO 2 ), or both into hydrogen (H 2 ), carbon monoxide (CO), or syngas (H 2 +CO), respectively.
A team of scientists from Penn State and Florida State University have developed a lower cost and industrially scalable catalyst consisting of synthesized stacked graphene and W x Mo 1–x S 2 alloy phases that produces pure hydrogen through a low-energy water-splitting process.
jointly announced that, toward the achievement of carbon neutrality, they will take on the challenge of expanding fuel options through the use of internal combustion engines at the (three-hour) Super Taikyu Race in Okayama on 13-14 November. Participating in races using carbon-neutral fuels. Kawasaki Heavy Industries, Ltd.,
Stuart Licht reports that the addition of carbon nanotubes (CNTs) produced from CO 2 by low-energy C2CNT (CO 2 to CNT) molten electrolysis ( earlier post ) to materials such as concrete or steel not only forms composites with significantly better properties, but amplifies the reduction of CO 2. A) Carbon mitigation with CNT-cement. (B)
In collaboration with NE, DOE’s Hydrogen and Fuel Cell Technologies Office will provide funding and project oversight for the two hydrogen production–related projects that were selected: General Electric Global Research, Scaled Solid Oxide Co-Electrolysis for Low-Cost Syngas Synthesis from Nuclear Energy.
Southwest Research Institute and The University of Texas at San Antonio (USTA) are collaborating to combine two catalytic processes into a single reactor, with the overall goal of recycling carbon from COCO 2 2 to produce low-cost hydrocarbon fuels.
ARPA-E’s first solicitation awarded $151 million to 37 projects aimed at transformational innovations in energy storage, biofuels, carbon capture, renewable power, building efficiency, vehicles, and other areas. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel. Water will be the primary byproduct.
The most common method to enhance oil retrieval following primary recovery is termed waterflooding, which entails injecting water into wells to maintain or increase reservoir pressure. This process is limited in effect because oil is more viscous than water and is bypassed as water flows through the rock matrix.
These project teams will pursue methods to create high-value carbon and hydrogen from methane (four projects, $14.4 million), or to produce super strong, durable concrete with lower cost and environmental impact (3 projects, $6.1 High Value, Energy Saving Carbon Products and Clean Hydrogen Gas from Methane, $3,479,624.
The projects will feature collaborations with EERE’s Advanced Manufacturing Office on manufacturing reliable and affordable electrolyzers and with EERE’s Vehicle Technologies Office on developing low-cost, high-strength carbon fiber for hydrogen storage tanks. Carbon Composite Optimization Reducing Tank Cost.
78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other gases) added—it is actually evacuated from the process so there is zero combustion inside the rotary reformer. In Steam CO 2 Reforming, there is no oxygen or air (i.e. 22 CCR § 66260.10 Definitions and 40 CFR § 260.10 Definitions).
Ranges of automotive fuel cell system costs at mass manufactured volume using technology from three UK companies supported by the Carbon Trust. Source: Carbon Trust. Our new analysis shows that the future is bright but innovation is essential to unlock the market potential by driving down the costs of new polymer fuel cells.
This drawing shows the damaged outer wall of a carbon nanotube with nanosized graphene pieces (white patches), which facilitate the formation of catalytic sites made of iron (yellow) and nitrogen (red) atoms. The catalyst reduces oxygen to water. Developing a low-cost alternative has been a major research goal for several decades.
ARPA-E’s new program, Robust Affordable Next Generation Energy Storage Systems (RANGE) ( earlier post ), aims to accelerate widespread EV adoption by dramatically improving driving range and reliability, and by providing low-cost, low-carbon alternatives to today’s vehicles. University of Houston. EnZinc Inc. Air Battery.
H2Pro is developing a new way of producing hydrogen from water. Similar to electrolysis, its technology, E-TAC (Electrochemical – Thermally Activated Chemical)—developed at Technion, Israel Institute of Technology—uses electricity to split water into hydrogen and oxygen. HHV) inside the reactors and a 95% system efficiency.
A key benefit of this joint effort is the direct coordination of NSF-funded use-inspired basic research and EERE-funded applied R&D toward the development of cost-effective large-scale systems for the low-carbon production of hydrogen through advanced solar water-splitting technologies.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) announced $11 million in funding for 7 projects in the fourth and fifth cohorts of the agency’s OPEN+ program: Energy-Water Technologies and Sensors for Bioenergy and Agriculture. Energy-Water Technologies cohort.
The US Department of Energy (DOE) selected eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency, low-costcarbon dioxide capture from coal-fired power plants. DOE Investment: $1,000,000; Recipient Cost-Share: $226,000. Pratt & Whitney Rocketdyne.
EPFL scientists have developed an Earth-abundant and low-cost catalytic system for splitting CO 2 into CO and oxygen—an important step towards achieving the conversion of renewable energy into hydrocarbon fuels. Using only Earth-abundant materials to catalyze both reactions, this design keeps the cost of the system low.
C-Zero’s technology, which was initially developed at the University of California, Santa Barbara, uses innovative thermocatalysis to split methane into hydrogen and solid carbon in a process known as methane pyrolysis. The methane decomposition reaction is moderately endothermic; the energy requirement per mole of hydrogen produced (8.9
Designed for the requirements of both small- and large-scale stationary energy storage applications, Aquion’s patented AHI battery systems offer high-performance, low-cost, operational safety, and sustainability. Aqueous hybrid ion chemistry. Source: Aquion. Click to enlarge.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content