This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
At the hubs, which can be built at or near landfills, Raven SR will convert mixed and multiple organic wastes, including municipal solid waste, greenwaste, food waste, medical, paper, etc. Raven can also easily process natural and renewable gases alone or combined with solid waste. 22 CCR § 66260.10 Definitions).
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A) —Saadi et al.
the strategic investment arm of South Korea’s SK Group, was part of a $50-million investment in Fulcrum BioEnergy, a US-based waste-to-fuels company. Fulcrum produce biofuel on a commercial scale by chemically converting municipal solid waste (MSW) into transportation fuels. Founded in Pleasanton, Calif.,
The INEOS Bio waste-to-ethanol process, originally developed by BRI. Converting household organic wastes into bio-fuel and clean energy can deliver very attractive environmental and social benefits to the North East and the UK as a whole. Click to enlarge. Earlier post.). The hot synthesis gas is quenched and cleaned.
Fulcrum BioEnergy, a clean energy company pioneering the creation of renewable, drop-in transportation fuels from landfill waste, successfully produced a low-carbon synthetic crude oil using landfill waste as a feedstock at its Sierra BioFuels Plant, the world’s first commercial-scale landfill waste-to-fuels plant.
has developed a proprietary catalytic process that transforms low-cost commercially available, or even waste by-product, renewable alcohols into renewable isoprene that would be expected to compete head-to-head on price with natural and petroleum-based chemical equivalents while reducing CO 2 emissions.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
The composite blocks can be made from low-cost and locally sourced materials, including the excavated soil at the construction site, but can also utilize waste materials such as mine tailings, coal combustion residuals (coal ash), and fiberglass from decommissioned wind turbine blades. barrel per ton of feedstock.
With this research, we looked to make a new biofuel conversion process that is relevant and applicable to renewable and waste-to-energy technology. In addition, researchers are testing how the catalyst performs with more complex waste materials that produce a mixture of ethers besides 4-butoxyheptane.
to pursue opportunities in large-scale, low-cost and permanent carbon capture and storage (CCS). Importantly, FPX will have the right to use any intellectual property developed by CO 2 Lock, further raising the potential for development of a low- or zero-carbon nickel mining operation at Decar. FPX Nickel Corp.,
LanzaTech, a producer of low-carbon fuels and chemicals from waste gases, was awarded a $4-million grant by the Advanced Research Projects Agency-Energy (ARPA-E) as one of the 15 REMOTE projects ( earlier post ) receiving a combined $34 million to find advanced biocatalyst technologies that can convert natural gas to liquid fuel for transportation.
In a study investigating the effect of the water and free fatty acid (FFA) content in waste chicken fat from poultry processing plants on the production of renewable diesel (not biodiesel), researchers in Thailand have found that both higher FFA and water content improved the biohydrogenated diesel (BHD) yield. —Kaewmeesri et al.
DE-FOA-0002423 ) Topic Areas ins the FOA support DOE’s Bioenergy Technologies Office’s (BETO’s) objectives to reduce the minimum selling price of drop-in biofuels, lower the cost of biopower, and enable high-value products from biomass or waste resources. Improvements in productivity with traditional carbon dioxide (CO 2 ) supply.
A team at the University of Leeds (UK) is investigating hydrogen production from waste tires using a two-stage pyrolysis-gasification reactor and Ni-Mg-Al (1:1:1) catalyst. The generation rate of waste tires is increasing, especially with the continued increase in production of cars and trucks, the authors note. Elbaba et al.
Virgin Atlantic announced the development of a low-carbon, synthetic jet fuel kerosene produced from industrial waste gases with half the carbon footprint of the standard fossil fuel alternative in partnership with LanzaTech and Swedish Biofuels. lifecycle carbon emissions. global carbon cap and trade scheme.
Researchers at the University of California, Riverside’s Center for Environmental Research and Technology (CERT) at the Bourns College of Engineering have received two grants to further explore a steam hydrogasification process they developed to convert waste into fuels. process, making a slow carbon conversion reaction ten times faster.
Scientists at the University of Delaware are developing a new low-cost material for hydrogen storage—carbonized chicken feathers (CCFF)—that they say could meet the DOE requirements for hydrogen storage and are competitive with carbon nanotubes and metal hydrates at a tiny fraction of their cost.
ARPA-E’s first solicitation awarded $151 million to 37 projects aimed at transformational innovations in energy storage, biofuels, carbon capture, renewable power, building efficiency, vehicles, and other areas. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel. Earlier post.) Engineering E. per gallon.
The Carbon Trust has created a consortium of British businesses led by Axion Energy, a division of the Axion Group , to pioneer the development of an advanced, commercially viable pyrolysis process to turn municipal and wood waste into transport biofuel. The Carbon Trust is investing £7 million (US$10.6 catalyst lifetime).
million) construction costs for the first commercial plant in Europe using its waste-to-ethanol BioEnergy Process Technology. million gallons US) of carbon-neutral road transport fuel and generate more than 3MW of electricity for export from over 100,000 tonnes per year of biodegradable household and commercial waste.
The plants being contemplated are expected to have an attractive environmental footprint as they would process these waste streams with a low emissions profile. In addition, these plants have the potential to include nearly complete carbon capture capability.
Part-funded by the UK’s Technology Strategy Board as part of its Low-Carbon Vehicles initiative, the Flybus consortium brings together bus maker Optare, engineering consultancy Ricardo and traction drive technology specialist Torotrak. The project is due to publish the results of testing next year.
The transportation sector is the largest source of greenhouse gas emissions in the United States, accounting for about 28% of total carbon emissions. In NREL’s bioenergy program, for example, we have chemists studying the fundamental chemistry of converting biomass and waste materials into fuel.
Waste into X (WiX); $5.0 Direct Removal of Carbon Dioxide from Oceanwater (DOC); $2.0 Direct Removal of Carbon Dioxide from Ambient Air (DAC); $2.0 With nearly 2 billion tons of municipal solid waste (MSW) generated globally, this feedstock may constitute the largest resource for the recovery of CMs and other metals.
By leveraging RecycLiCo’s expertise in conversion of waste cathodes into valuable battery-grade materials, both parties are working to close the loop by returning the recycled product back to Nanoramic for cell production and further electrochemical analysis.
Kreutz used two examples of CCTF systems in his analysis: biodiesel from microalgae and Sandia National Laboratory’s S2P process (an effort to utilize concentrated solar energy to convert waste CO 2 into synthetic fuels, earlier post ). 90%) or to “repower” using lower carbon feedstocks or generation technologies (e.g.
The companies have initiated the partnership with a non-recurring engineering (NRE) agreement to develop low-carbon technology for the conversion of critical metals—first virgin and later recycled material—into battery-grade cathode active material (CAM) precursors, which are essential to 6K Energy’s advanced cathode manufacturing.
million for technologies that produce low-cost, low-carbon biofuels. ( million for technologies that produce low-cost, low-carbon biofuels. ( BETO is focused on developing technologies that convert domestic biomass and other waste resources (e.g.,
The US Department of Energy announced $33 million in funding for 17 projects as part of the Advanced Research Projects Agency-Energy’s (ARPA-E) Aviation-class Synergistically Cooled Electric-motors with iNtegrated Drives (ASCEND) and Range Extenders for Electric Aviation with LowCarbon and High Efficiency (REEACH) programs.
The partnership aims to combine Horizon’s hydrogen fuel cells to Pilus Energy’s renewable hydrogen production platform, with the goal of providing a unique turnkey, end-to-end solution to generate clean power at a lowcost. —Taras Wankewycz, Founder and Chief Marketing Officer of Horizon Fuel Cell Technologies.
The European Union-funded PowerDriver project—a two-year, €3-million (US$4-million) research project initiated in February 2012 to turn exhaust gas waste heat into electricity using thermoelectric generator (TGEN) technology—has completed simulation work on on a potential automotive application.
LanzaTech has been selected by the Department of Energy’s Bioenergy Technologies Office (BETO) to receive a $4-million award to design and plan a demonstration-scale facility using industrial off gases to produce 3 million gallons/year of low-carbon jet and diesel fuels. The LanzaTech award was one of six totaling $12.9 Earlier post.).
DOE’s early stage research for the Coal FIRST Initiative supports the development of electricity and hydrogen energy plants that have net-zero carbon emissions. These plants will be fueled by coal, natural gas, biomass, and waste plastics and incorporate carbon capture, utilization and storage (CCUS) technologies.
ARPA-E’s first solicitation, announced earlier this year, was highly competitive and resulted in awarding $151 million to 37 projects aimed at transformational innovations in energy storage, biofuels, carbon capture, renewable power, building efficiency, vehicles, and other areas. Earlier post.)
Under the FOCUS program, projects will develop advanced solar converters that turn sunlight into electricity for immediate use, while also producing heat that can be stored at lowcost for later use as well as innovative storage systems that accept both heat and electricity from variable solar sources. Earlier post.).
Startup ClearFlame Engine Technologies announced a partnership with Alto Ingredients, a leading producer of specialty alcohols and essential ingredients, to conduct pilot demonstrations of ClearFlame’s solution for diesel engines using low-cost ethanol in Class 8 trucks.
The solicitation was designed as a call for early-stage clean energy innovations that fall within five defined technology areas: energy efficiency; energy storage; AI/machine learning; advanced power electronics/power conditioning; and zero- and negative-carbon emission generation.
With a $2-million grant from the California Energy Commission (CEC), Berkeley Lab is partnering with Alphabet Energy to create a cost-effective thermoelectric waste heat recovery system to reduce both energy use in the industrial sector and electricity-related carbon emissions.
LanzaTech’s carbon capture and utilization technology provides a capital-efficient and cost-effective alternative to traditional carbon capture and storage (CCS). Led by Mitsui & Co. with a $20M investment, the round includes new investors Siemens via its Venture Capital unit (SFS VC), CICC Growth Capital Fund I, L.P.
This project will develop a new process that enables low-cost, domestic manufacturing of magnesium. This project will develop a novel lowcost route to carbon fiber using a lignin/PAN hybrid precursor and carbon fiber conversion technologies leading to high performance, low-costcarbon fiber.
Shockwave’s Thermodynamic Corn Fractionation Process is a front-end corn fractionation platform that uses high velocity air and pressure changes to fractionate solid materials, providing an novel, low-cost approach to separating the corn kernel into the various fractions including a higher-starch feed for fermentation as well as germ and fiber.
The US Department of Energy (DOE) announced the award of approximately $72 million in federal funding to support the development and advancement of carbon capture technologies under two funding opportunity announcements (FOAs). Enabling Production of LowCarbon Emissions Steel Through CO 2 Capture from Blast Furnace Gases.
The BlueSmelting project is an ilmenite smelting technology that could generate 95% less greenhouse gas emissions than RTFT’s current reduction process, enabling the production of high-grade titanium dioxide feedstock, steel and metal powders with a drastically reduced carbon footprint.
Carbon Capture (5 projects). Waste Heat Capture (2 projects). Eagle Picher, in partnership with the Pacific Northwest National Laboratory, will develop a new generation of high energy, lowcost planar liquid sodium beta batteries for grid scale electrical power storage applications. Biomass Energy (5 projects).
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content