This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). The process is constrained by the (low) cost of electricity. —Johnson et al.
BayoTech’s patented technology requires less feedstock, which means fewer carbon emissions and less cost to produce hydrogen than traditional reformers, the company says. Accounting for the carbon intensity for the entire value chain delivers a very different picture, according to Bayotech.
Canada-based Carbon Engineering Ltd. (CE) CE) has received equity investment from two global energy companies: Oxy LowCarbon Ventures, LLC (OLCV), a subsidiary of Occidental Petroleum Corporation; and Chevron Technology Ventures (CTV), the venture capital arm of Chevron Corporation.
Heliogen’s AI-enabled concentrated solar energy system is designed to create carbon-free steam, electricity, and heat from abundant and renewable sunlight. When combined with Bloom’s proprietary solid oxide, high-temperature electrolyzer, hydrogen can be produced 45% more efficiently than low-temperature PEM and alkaline electrolyzers.
Using an inexpensive polymer called melamine, researchers from UC Berkeley, Texas A&M and Stanford have created a cheap, easy and energy-efficient way to capture carbon dioxide from smokestacks. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption.
LeMond Composites, founded by three-time Tour de France champion Greg LeMond, has licensed a low-cost, high-volume carbon fiber manufacturing process developed at the US Department of Energy’s Oak Ridge National Laboratory (ORNL). Earlier post.)
There is an accompanying need to develop new low-cost and low-carbon technologies for hydrogen production. Aurora Hydrogen is scaling its proprietary and highly efficient microwave pyrolysis technology to produce hydrogen and solid carbon from natural gas without generating CO 2 emissions or consuming water.
Solid-oxide-fuel-cell manufacturer Bloom Energy is entering the commercial hydrogen market by introducing hydrogen-powered fuel cells and electrolyzers that produce renewable hydrogen. The Bloom Energy Servers are a proven market leader in clean, reliable, and resilient on-site power. million hydrogen cars by 2040.
AW-Energy Oy is entering the commercial hydrogen market by introducing a combined WaveRoller and HydrogenHub process for the production of green hydrogen. Wave energy holds the greatest potential to generate constant low-cost green hydrogen. The technology can be deployed as single units or in farms.
AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulfuric acid. First, scalability: AQDS contains only the Earth-abundant atoms carbon, sulphur, hydrogen and oxygen, and can be inexpensively manufactured on large scales. I’m excited that we have a good shot at it.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – lowcarbon hydrogen plant. Contract value: £3.12 million (US$4.1
Group14 Technologies, a provider of silicon-carbon composite materials for global lithium-ion markets, announced that it has been selected as a winner of the Department Of Energy’s Energy Storage Grand Challenge and will receive a $3.96-million million award.
Start-up Power Japan Plus announced plans to commercialize a dual-carbon battery technology, which it calls the Ryden dual carbon battery. Dual-carbon (also called dual-graphite) batteries were first introduced by McCullough and his colleagues at Dow Chemical in a 1989 patent, and were subsequently studied by Carlin et al.
has developed a proprietary catalytic process that transforms low-cost commercially available, or even waste by-product, renewable alcohols into renewable isoprene that would be expected to compete head-to-head on price with natural and petroleum-based chemical equivalents while reducing CO 2 emissions.
It can reduce both carbon and local emissions, increase energy security and strengthen the economy, as well as support the deployment of renewable power generation such as wind, solar, nuclear and hydro. For US transport, hydrogen is a strong low-carbon alternative. Demand potential across sectors, base and ambitious cases.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
to pursue opportunities in large-scale, low-cost and permanent carbon capture and storage (CCS). Importantly, FPX will have the right to use any intellectual property developed by CO 2 Lock, further raising the potential for development of a low- or zero-carbon nickel mining operation at Decar. FPX Nickel Corp.,
However, regulations, market design and the costs of power and electrolyzer production are still major barriers to the uptake of green hydrogen, the IRENA report says. Today, green hydrogen is 2-3 times more expensive than “blue” hydrogen, produced from fossil fuels in combination with carbon capture and storage (CCS).
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. Synergistic Heat Pumped Thermal Storage and Flexible Carbon Capture System - $1,000,000. The team’s approach uses a novel and low-cost heat-pump thermal storage system.
LeMond Carbon announced the results of an independent technical audit conducted by Bureau Veritas (BV) of its carbon fiber manufacturing process. The audit was conducted on a pilot line at Deakin University’s Carbon Nexus facility in Geelong, Australia. From Bureau Veritas audit of LeMond’s carbon fiber manufacturing process.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A) —Saadi et al.
Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. The photoreactors have a low level of complexity, are readily manufacturable via mass fabrication techniques in polymers, and are easy to adapt to diverse photocatalysts.
IperionX Limited has agreed a Scope of Work (SoW) for the supply of titanium metal components for Ford Motor Company using IperionX’s 100% recycled, low-carbon titanium metal. This Ford SoW follows a detailed program of quality and strength testing of IperionX’s low-carbon, circular titanium metal.
The projects will feature collaborations with EERE’s Advanced Manufacturing Office on manufacturing reliable and affordable electrolyzers and with EERE’s Vehicle Technologies Office on developing low-cost, high-strength carbon fiber for hydrogen storage tanks. Carbon Composite Optimization Reducing Tank Cost.
The storage battery market is expected to continue growing in light of the spread of renewable energy and electrified vehicles, as well as the global trend toward carbon neutrality.
The new funds will be used to scale-up manufacturing of a next-generation silicon-carbon composite anode material and advance into commercial production. Group14 Technologies—a 2016 spin-off from EnerG2—derives its name from the Periodic Table column listing both silicon and carbon (the carbon group).
The transportation sector is the largest source of greenhouse gas emissions in the United States, accounting for about 28% of total carbon emissions. Like bioenergy, hydrogen sits at the center of NREL’s strategy for a transportation system decoupled from carbon emissions.
Saratoga Energy has won a National Science Foundation grant to scale up its breakthrough process for generating low-cost, top quality carbon nanotubes from carbon dioxide for use in making high-performance Li-ion batteries, such as those used in electric vehicles, grid storage, and military and aerospace applications.
With today’s unveiling of the FCgen-LCS stack and next year’s planned launch of LCS-based power modules, Ballard will remain the market leader in zero-emission PEM fuel cell power solutions for the Heavy Duty Motive market. —Randy MacEwen, Ballard President and CEO.
The focus of the research project “MaSSiF – Material Innovations for Solid-State Sulfur-Silicon Batteries” is the design, construction and evaluation of lightweight and low-cost sulfur-based prototype cells with high storage capacities. The German Federal Ministry of Education and Research (BMBF) is providing nearly €2.9
Nikola Corporation and KeyState Natural Gas Synthesis , a clean hydrogen and chemicals production facility under development, are working together to create Pennsylvania’s first low-carbon hydrogen production value chain, which includes full integration of commercial carbon capture and storage.
They are the product of Amazon’s partnership with Rivian, which the companies announced in 2019 when Amazon co-founded, and became the first signatory of The Climate Pledge—a commitment to reach net-zero carbon across its operations by 2040.
The pomegranate-like sulfur host with titanium nitride-carbon dual-layer hollow nanospheres (Pome-TiN@C) not only effectively suppresses the polysulfides diffusion by multiple layers of chemical and physical barriers, but also facilitates their conversion reactions.
Ultimately, SpinLaunch’s Orbital Accelerator will accelerate a launch vehicle containing a satellite up to 5,000 miles per hour using a rotating carbon-fiber-arm within a 300-ft diameter steel vacuum chamber. After full review, NASA and SpinLaunch will publish all non-proprietary launch environment information from the test flight.
This one-step nitrogen-fixation strategy to produce ammonia is eco-friendly and lowcost, which converts widely available starting materials into a value-added product. The steam-treating of natural gas involved in the process also releases ample amounts of carbon dioxide. —Song et al.
Rising raw material and battery component prices and soaring inflation have led to the first increase in lithium-ion battery pack prices since BloombergNEF (BNEF) began tracking the market in 2010. he upward cost pressure on batteries outpaced the higher adoption of lower cost chemistries like lithium iron phosphate (LFP).
The plant will produce cleaner gasoline from low-cost natural gas, captured bio-methane from farms and landfills, and mitigated flared gas from the Permian basin. The Penwell facility will be the first gasoline manufacturer in the world to incorporate carbon capture and sequestration.
The new PNNL carbon capture and conversion system brings the cost to capture CO 2 down to about $39 per metric ton. Just as one can choose between single-use and recyclable materials, so too can one recycle carbon. But the ability to both capture carbon and then convert it into methanol in one continuously flowing system is.
The US Department of Energy announced up to $64 million in funding ( DE-FOA-0002229 ) to advance innovations that will build new markets for the H2@Scale initiative ( earlier post ).
The composite blocks can be made from low-cost and locally sourced materials, including the excavated soil at the construction site, but can also utilize waste materials such as mine tailings, coal combustion residuals (coal ash), and fiberglass from decommissioned wind turbine blades. barrel per ton of feedstock.
million in EPIC funding to 75 projects statewide to help California entrepreneurs bring early-stage clean energy technologies to market. NanoDian : Low-cost, safer, cobalt-free, nanostructured lithium-ion battery cathode material. EndLis Energy : Low-cost, environmentally-sustainable, lithium carbon-based rechargeable batteries.
Fulcrum BioEnergy, a clean energy company pioneering the creation of renewable, drop-in transportation fuels from landfill waste, successfully produced a low-carbon synthetic crude oil using landfill waste as a feedstock at its Sierra BioFuels Plant, the world’s first commercial-scale landfill waste-to-fuels plant.
When including the cost of storage and pipeline infrastructure, the delivered cost of renewable hydrogen in China, India and Western Europe could fall to around $2/kg ($15/MMBtu) in 2030 and $1/kg ($7.4/MMBtu) Note: Clean hydrogen refers to both renewable and low-carbon hydrogen (from fossil-fuels with CCS).
24M’s SemiSolid platform technology provides opportunities for the production of cost-optimized, application-specific designs in both grid and electric mobility markets. We are now in the process of accelerating and increasing our ambitions to scale up production for all relevant market segments.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content