Remove Carbon Remove Lithium Air Remove Universal Remove Water
article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.

Li-ion 281
article thumbnail

ARPA-E Selects 37 Projects for $106M in Funding in Second Round; Electrofuels, Better Batteries and Carbon Capture

Green Car Congress

ARPA-E’s first solicitation awarded $151 million to 37 projects aimed at transformational innovations in energy storage, biofuels, carbon capture, renewable power, building efficiency, vehicles, and other areas. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel. Water will be the primary byproduct.

Carbon 249
article thumbnail

Researchers show feasibility of lithium-metal-free anode for Li-air battery; addressing one of three main barriers to Li-air battery development

Green Car Congress

Researchers from University of Rome Sapienza (Italy), Hanyang University (Korea) and the Argonne National Laboratory (US) have shown that the highly reactive lithium metal anode typically projected for use in Li-air batteries can be replaced with a lithiated silicon-carbon anode. Cycling current: 200 mA g ?1

Li-ion 306
article thumbnail

New nanolithia cathodes may address technical drawbacks of Li-air batteries; scalable, cheap and safer Li-air battery system

Green Car Congress

An international team from MIT, Argonne National Laboratory and Peking University has demonstrated a lab-scale proof-of-concept of a new type of cathode for Li-air batteries that could overcome the current drawbacks to the technology, including a high potential gap (>1.2 V) It also displays stable cycling performance (only 1.8%

Cheap 150
article thumbnail

IBM releases fifth annual Next Five in Five list of near-term significant innovations; personalized routing for commuting/transportation makes the cut

Green Car Congress

Also on the list of five is the arrival of advanced batteries, including air batteries (e.g., Lithium air), but targeted initially at small devices. Kyoto University and IBM Research - Tokyo have developed a system that can simulate a broad range of urban transport situations involving millions of vehicles.

Personal 210
article thumbnail

DOE awards $54M to 13 projects for transformational manufacturing technologies and materials; top two awards go to carbon fiber materials and electrodes for next-gen batteries

Green Car Congress

The top two awards, one of $9 million to a project led by Dow Chemical, and one of $8.999 million to a project led by PolyPlus, will fund projects tackling, respectively, the manufacturing of low-cost carbon fibers and the manufacturing of electrodes for ultra-high-energy-density lithium-sulfur, lithium-seawater and lithium-air batteries.

article thumbnail

Cambridge researchers take new approach to overcome challenges to Li-O2 batteries; laboratory demonstrator

Green Car Congress

Researchers at the University of Cambridge have developed a working laboratory demonstrator of a lithium-oxygen battery which has very high energy density, is more than 90% efficient, and, to date, can be recharged more than 2000 times, showing how several of the problems holding back the development of these devices could be solved.

Li-ion 150