Remove Carbon Remove Lithium Air Remove Recharge
article thumbnail

NIMS researchers report 500 Wh/kg+ Li-air battery

Green Car Congress

Researchers at Japan’s National Institute for Materials Science (NIMS) and the NIMS-SoftBank Advanced Technologies Development Center have developed a lithium-air battery with an energy density of more than 500 Wh/kg—significantly higher than currently lithium ion batteries.

article thumbnail

Researchers Develop Solid-State, Rechargeable Lithium-Air Battery; Potential to Exceed 1,000 Wh/kg

Green Car Congress

Sample UDRI solid-state, rechargeable lithium-air batteries, and Dr. Binod Kumar. Engineers at the University of Dayton Research Institute (UDRI) have developed a solid-state, rechargeable lithium-air battery. Click to enlarge. Binod Kumar, leader of UDRI’s electrochemical power group.

article thumbnail

Researchers directly visualize formation and disappearance of Li-O2 reaction products; insights to support development of rechargeable lithium-air batteries

Green Car Congress

During discharge, Li ions meet with reduced oxygen on the surface of the Li x V 2 O 5 electrode forming Li 2 O 2 , which is decomposed upon recharge. The rechargeable Li?air The observational method this team developed could have implications for studying reactions far beyond lithium-air batteries, Yang Shao-Horn, the Gail E.

article thumbnail

MIT team synthesizes all carbon nanofiber electrodes for high-energy rechargeable Li-air batteries

Green Car Congress

This translates to an energy enhancement ~4 times greater than the state-of-the-art lithium intercalation compounds such as LiCoO 2 (~600 W h kg electrode -1 , the researchers said. In that work, the carbon structures were more complex but only had about 70% void space. ” Resources. Mitchell, Betar M. Gallant, Carl V.

MIT 268
article thumbnail

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Diagram of the STAIR (St Andrews Air) cell. Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Lithium-air batteries use a catalytic air cathode in combination with an electrolyte and a lithium anode. Click to enlarge.

article thumbnail

OSU team demonstrates concept of potassium-air battery as alternative to lithium-air systems

Green Car Congress

Recently, researchers have also found out the instability of electrolyte and carbon electrode under the high charging potential (>3.5 V), which contributes to the low rechargeability. But the necessity of catalysts has been argued, because the catalyst on carbon may not be able to work once its surface is blocked.

article thumbnail

AIST Developing New Lithium-Air Battery; Lithium Fuel Cell

Green Car Congress

Long-term discharge curve of the newly developed lithium-air cell. Researchers at Japan’s AIST (National Institute of Advanced Industrial Science and Technology) are developing a lithium-air cell with a new structure (a set of three different electrolytes) to avoid degradation and performance problems of conventional lithium-air cells.