This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
ARPA-E’s first solicitation awarded $151 million to 37 projects aimed at transformational innovations in energy storage, biofuels, carbon capture, renewable power, building efficiency, vehicles, and other areas. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel. Earlier post.) Engineering E. per gallon.
Carbon is seen as an attractive potential cathode material for aprotic (non-aqueous) Lithium-air batteries, which are themselves of great interest for applications such as in electric vehicles because of the cells’ high theoretical specific energy. For their study, they cycled carbon cathodes in Li?O —Thotiyl et al.
The top two awards, one of $9 million to a project led by Dow Chemical, and one of $8.999 million to a project led by PolyPlus, will fund projects tackling, respectively, the manufacturing of low-costcarbon fibers and the manufacturing of electrodes for ultra-high-energy-density lithium-sulfur, lithium-seawater and lithium-air batteries.
The introduction of hydrogen into the engine virtually eliminates fuel emissions while greatly reducing the emissions of hydrocarbons and carbon monoxide. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70%.
optioned a PNNL-developed method for building titanium oxide and carbon structures that greatly improve the performance of lithium-ion batteries. The new material stores twice as much electricity at high charge/discharge rates as current lithium ion batteries, and creates increased battery capacity and a longer cycle life.
For the longer term, (2017-2027) while “beyond Li-ion” battery chemistries such as lithium-sulfur, magnesium-ion, zinc-air, and lithium-air, offer the potential of significantly greater energy densities, breakthrough innovation will be required for these new battery technologies to enter the PEV market, according to DOE.
The US Department of Energy (DOE) is awarding $60 million to 24 research and development projects aimed at reducing carbon dioxide emissions from passenger cars and light- and heavy-duty trucks. (DE-FOA-0002420) Liquid Electrolytes for Lithium-Sulfur Batteries with Enhanced Cycle Life and Energy Density Performance. AOI 6: Low?cost
For example, several production processes were considered for hydrogen and biofuels, and both conventional generation and low-GHG-emission scenarios were considered for electricity. For vehicles, these included weight reduction and improvements in rolling and aerodynamic resistance; for fuels, carbon capture and storage (CCS).
carbon composite chassis explored by BMW), by improvements in electric-drive efficiency, and by advanced vehicle climatization concepts (e.g., However, with regards to cost, lithium-sulfur batteries might be superior, if the additional components which might be needed to improve cycle-life and safety (diffusion barriers, etc.)
All are counting on battery innovations to improve EV performance, drive down costs, and eliminate dependence on scarce materials. The ideal battery will be made of low-cost, plentiful materials that are lightweight and flexible enough to allow vehicle design innovations.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content