article thumbnail

Researchers Develop Solid-State, Rechargeable Lithium-Air Battery; Potential to Exceed 1,000 Wh/kg

Green Car Congress

Sample UDRI solid-state, rechargeable lithium-air batteries, and Dr. Binod Kumar. Engineers at the University of Dayton Research Institute (UDRI) have developed a solid-state, rechargeable lithium-air battery. Abraham (2010) A Solid-State, Rechargeable, Long Cycle Life LithiumAir Battery. Click to enlarge.

article thumbnail

AIST Developing New Lithium-Air Battery; Lithium Fuel Cell

Green Car Congress

Long-term discharge curve of the newly developed lithium-air cell. Researchers at Japan’s AIST (National Institute of Advanced Industrial Science and Technology) are developing a lithium-air cell with a new structure (a set of three different electrolytes) to avoid degradation and performance problems of conventional lithium-air cells.

article thumbnail

NIMS researchers report 500 Wh/kg+ Li-air battery

Green Car Congress

Researchers at Japan’s National Institute for Materials Science (NIMS) and the NIMS-SoftBank Advanced Technologies Development Center have developed a lithium-air battery with an energy density of more than 500 Wh/kg—significantly higher than currently lithium ion batteries.

article thumbnail

OSU team demonstrates concept of potassium-air battery as alternative to lithium-air systems

Green Car Congress

Recently, researchers have also found out the instability of electrolyte and carbon electrode under the high charging potential (>3.5 But the necessity of catalysts has been argued, because the catalyst on carbon may not be able to work once its surface is blocked. V), which contributes to the low rechargeability. oxygen batteries.

article thumbnail

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Diagram of the STAIR (St Andrews Air) cell. Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Lithium-air batteries use a catalytic air cathode in combination with an electrolyte and a lithium anode. Click to enlarge.

article thumbnail

MIT Researchers Report Progress on Catalyst Development for Lithium-Air Batteries

Green Car Congress

A team of researchers at MIT led by Professor Yang Shao-Horn have found that gold-carbon (Au/C) and platinum-carbon (Pt/C) catalysts have a strong influence on the charge and discharge voltages of rechargeable lithium-air (Li-O 2 ) batteries, and thus enable a higher efficiency than simple carbon electrodes in these batteries.

article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.

Li-ion 281