Remove Carbon Remove Li-ion Remove Low Cost
article thumbnail

New high-voltage electrolyte additive supports high energy density and stability in LMNC Li-ion battery; 2x energy density over LiCoO2

Green Car Congress

Korea) has developed a novel high-voltage electrolyte additive, di-(2,2,2 trifluoroethyl)carbonate (DFDEC), for use with the promising lithium-rich layered composite oxide high-energy cathode material xLi 2 MnO 3 ·(1-x)LiMO 2 (M = Mn, Ni, Co). O 2 (Li 1.2 V with 5 wt% of the fluorinated linear carbonate DFDEC as an additive.

Li-ion 329
article thumbnail

Team develops high-capacity Li-ion sulfur battery; no Li-metal anode

Green Car Congress

ion battery using an enhanced sulfur–carbon composite cathode that exploits graphene carbon with a 3D array (3DG?S) based anode (Li y SiO x –C)—i.e. avoiding the use of a Li metal anode entirely. The Li y SiO x –C/3DG? cost and high?energy?storage Ion Battery using a 3?D?Array

Li-ion 231
article thumbnail

Study shows paper-folding concepts can compact a Li-ion battery and increase its areal energy density

Green Car Congress

Researchers at Arizona State University have shown that paper-folding concepts can be applied to Li-ion batteries in order to realize a device with higher areal energy densities. These initial results showed that the Li-ion batteries can still exhibit good electrochemical performance even after multiple folds, they said.

Li-ion 331
article thumbnail

EnerG2 introduces silicon-carbon composite for Li-ion anodes; 5x improvement in cycle life over silicon

Green Car Congress

EnerG2, a company manufacturing advanced nano-structured materials for next-generation energy storage, has introduced a carbon and silicon composite to boost lithium-ion battery capacity and power performance. Earlier post.). The composite material has been scaled for commercial manufacturing.

Li-ion 236
article thumbnail

Japanese start-up seeks to commercialize dual-carbon battery technology; anion intercalation

Green Car Congress

Start-up Power Japan Plus announced plans to commercialize a dual-carbon battery technology, which it calls the Ryden dual carbon battery. Dual-carbon (also called dual-graphite) batteries were first introduced by McCullough and his colleagues at Dow Chemical in a 1989 patent, and were subsequently studied by Carlin et al.

Carbon 373
article thumbnail

Lifecycle study finds that environmental impacts of silicon-anode Li-ion battery could be roughly comparable with conventional Li-ion battery

Green Car Congress

Credit: ACS, Li et al. In particular, silicon nanowires (SiNW) are widely studied as a promising anode material for high-capacity LIBs due to its low cost of fabrication and volume production potential. —Li et al. —Li et al. Click to enlarge.

Li-ion 265
article thumbnail

Envia Systems announcement may herald the first wave of DOE-supported commercial high energy density Li-ion cells with Si-C anodes

Green Car Congress

As an example, the military’s BB-2590 Li-ion battery used in a range of portable systems calls for a cycle life of ≥224 and ≥ 3 years.). LIB capacity is limited in part by the intercalation of Li ions by the anode material—i.e., high capacity, increased safety and low cost. Click to enlarge.

Li-ion 286