Remove Carbon Remove Li-ion Remove Low Cost
article thumbnail

Aqua Metals and 6K Energy partner to develop low-carbon CAM precursors for Li-ion batteries

Green Car Congress

The companies have initiated the partnership with a non-recurring engineering (NRE) agreement to develop low-carbon technology for the conversion of critical metals—first virgin and later recycled material—into battery-grade cathode active material (CAM) precursors, which are essential to 6K Energy’s advanced cathode manufacturing.

Li-ion 199
article thumbnail

Team develops high-capacity Li-ion sulfur battery; no Li-metal anode

Green Car Congress

ion battery using an enhanced sulfur–carbon composite cathode that exploits graphene carbon with a 3D array (3DG?S) based anode (Li y SiO x –C)—i.e. avoiding the use of a Li metal anode entirely. The Li y SiO x –C/3DG? cost and high?energy?storage Ion Battery using a 3?D?Array

Li-ion 231
article thumbnail

Sulfur-carbon nanofiber composite for solid-state Li-sulfur batteries

Green Car Congress

Researchers at Toyohashi University of Technology in Japan have developed an active sulfur material and carbon nanofiber (S-CNF) composite material for all-solid-state Li-sulfur batteries using a low-cost and straightforward liquid phase process. Copyright Toyohashi University Of Technology. —Phuc et al.

Carbon 243
article thumbnail

BNEF: Li-ion battery pack prices rise for first time since 2010 to an average of $151/kWh

Green Car Congress

Rising raw material and battery component prices and soaring inflation have led to the first increase in lithium-ion battery pack prices since BloombergNEF (BNEF) began tracking the market in 2010. he upward cost pressure on batteries outpaced the higher adoption of lower cost chemistries like lithium iron phosphate (LFP).

Li-ion 414
article thumbnail

Group14 closes $18M in financing to scale-up silicon-carbon composite anode material

Green Car Congress

The new funds will be used to scale-up manufacturing of a next-generation silicon-carbon composite anode material and advance into commercial production. Group14 Technologies—a 2016 spin-off from EnerG2—derives its name from the Periodic Table column listing both silicon and carbon (the carbon group).

Financing 243
article thumbnail

New stable Fe3O4/C composite material for conversion electrode in solid-state Li-ion batteries

Green Car Congress

Researchers in Europe, with colleagues from Samsung R&D Institute in Japan, have developed a highly stable Fe 3 O 4 /C composite for use as a conversion electrode in all-solid-state Li-ion batteries. In addition, recently a new chemistry has surfaced, allowing to store more Li + by the so-called conversion mechanism. Resources.

Li-ion 170
article thumbnail

Fraunhofer leading “MaSSiF” research project on solid-state sulfur-silicon batteries

Green Car Congress

The focus of the research project “MaSSiF – Material Innovations for Solid-State Sulfur-Silicon Batteries” is the design, construction and evaluation of lightweight and low-cost sulfur-based prototype cells with high storage capacities. The German Federal Ministry of Education and Research (BMBF) is providing nearly €2.9

Battery 504