This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38
EIT InnoEnergy, the European innovation engine for sustainable energy, announced a partnership with Vulcan Energy Resources Limited (Vulcan), a start-up lithium exploration company, to produce the world’s first completely carbon-neutral lithium in Germany. As a result, the carbon footprint of the production process could even be negative.
Waste tires have been used mainly for recovering energy sources; only small proportions of the carbon black contained in these tires are recycled, since mineral ash accounts for around 20% of its content. Around three kilograms of carbon black—also known as industrial soot—are found in a standard car tire.
Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).
Canada-based Carbon Engineering Ltd. (CE) CE) has received equity investment from two global energy companies: Oxy Low Carbon Ventures, LLC (OLCV), a subsidiary of Occidental Petroleum Corporation; and Chevron Technology Ventures (CTV), the venture capital arm of Chevron Corporation.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – low carbon hydrogen plant. Contract value: £3.12 million (US$4.1 million (US$9.7
As the world looks to quickly decarbonize transportation and industry, hydrogen demand is expected to increase rapidly, from $130 billion today to $2.5 There is an accompanying need to develop new low-cost and low-carbon technologies for hydrogen production. T in 2025, according to the Hydrogen Council.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
project for industrial-scale production of green hydrogen via the electrolysis of water using ?renewable Electrolysis splits water into hydrogen and oxygen gases. energy, this produces ‘green’ hydrogen, without generating direct carbon emissions. ?Hydrogen renewable power, producing zero emissions. operational by 2024.
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.
The Jadar project would support the evolution of Rio Tinto—one of the world’s largest miners—into a chemical producer to make battery-grade lithium carbonate, a critical mineral used in large-scale batteries for electric vehicles and storing renewable energy. This is a significant moment for the lithium industry.
Researchers from Trinity College Dublin have shed new light on the formation mechanisms of a rare earth-bearing mineral that is in increasingly high demand across the globe for its use in the green energy and tech industries. Vegetation appears red, grassland is light brown, rocks are black, and water surfaces are green. Image: NASA.
The flagship project MethanQuest was launched in September 2018, and on it a total of 29 partners from research, industry and the energy sector have come together to work on processes for producing hydrogen and methane from renewables and for using them to achieve climate-neutral mobility and power generation.
Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convert carbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity. It can be produced from hydrogen and carbon dioxide, mitigating greenhouse gas emissions and storing hydrogen in the process.
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. The resulting hydrogen will initially be used at the power plant, but it could eventually be sold to other industries. Earlier post.) Prairie Island.
Lithium chemicals derived from hard rock sources such as spodumene can be more than three times as carbon-intensive as that from brine sources, according to Benchmark Mineral Intelligence’s (Benchmark Minerals’) Lithium ESG Report. Processing hard rock lithium sources is also more water-intensive than that of brines.
Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed a novel process for the production of hydrogen using various types of biomass, including lignin, as an efficient alternative to water oxidation as an electron source. Conventionally, water is considered a cheap and clean source of electrons; 2H 2 O ?
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al. —Shannon Boettcher.
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( the ocean and surface waters) that received their CO 2 directly from ambient air. DE-FOA-0002481 ).
Dow and X-Energy Reactor Company entered into a joint development agreement (JDA) to demonstrate the first grid-scale advanced nuclear reactor for an industrial site in North America. Earlier post.) The Xe-100 is fueled with 220,000 graphite pebbles with TRISO (tri-structural isotropic) particle fuel.
At that temperature, Heliogen can replace the use of fossil fuels in critical industrial processes, including the production of cement, steel, and petrochemicals, dramatically reducing greenhouse gas emissions from these activities. Its heat technology represents a key technical breakthrough for concentrated solar thermal.
Carbon Recycling International (CRI) and Johnson Matthey (JM) have agreed on a long-term exclusive catalyst supply agreement for the use of JM’s KATALCO methanol catalysts in CRI’s Emissions-To-Liquids (ETL) CO 2 -to-methanol plants. Hydrogen can also be processed from by-product hydrogen available in some industrial waste streams.
The technology developed by the UBC researchers—thermal methane cracking (TMC)—can produce up to 200 kilograms of hydrogen a day using natural gas, without using water, while reducing or eliminating greenhouse gas emissions. SMR still emits a significant amount of carbon dioxide and uses large quantities of water and energy.
FlyZero is the UK’s Aerospace Technology Institute (ATI) project aiming to realize zero-carbon emission commercial aviation by 2030. Funded by the Department for Business, Energy and Industrial Strategy, the project FlyZero began in early 2021 as an intensive research project investigating zero-carbon emission commercial flight.
Kawasaki Heavy Industries, Ltd., jointly announced that, toward the achievement of carbon neutrality, they will take on the challenge of expanding fuel options through the use of internal combustion engines at the (three-hour) Super Taikyu Race in Okayama on 13-14 November. Participating in races using carbon-neutral fuels.
The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). Fe 5 C 2 by CO 2 /water in the first hours of the catalytic reaction.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
The minimum 10-year deal will reduce lifecycle emissions by up to 340,647 metric tons of carbon dioxide per year, beginning with the first expected SAF deliveries in 2026. These changes eliminate the need for carbon sequestration and reduce the system’s feed-stock handling costs and complexity. —Christopher J.
Qiang Xu of Southern University of Science and Technology (SUSTech) have developed a promising method for carbon capture and storage using a single-crystalline guanidinium sulfate-based clathrate salt. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. Xiang et al.
Airbus and a number of major airlines—Air Canada, Air France-KLM, easyJet, International Airlines Group, LATAM Airlines Group, Lufthansa Group and Virgin Atlantic—have signed Letters of Intent (LoI) to explore opportunities for a future supply of carbon removal credits from direct air carbon capture technology.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. Earlier post.). and Hitachi, Ltd.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
The facility will filter 4,000 metric tons of carbon dioxide from the air and mineralize it underground. With direct air capture technology, carbon dioxide is extracted from the ambient air and air free of CO 2 is returned to the atmosphere. The carbon dioxide is thus permanently removed from the atmosphere.
2 using industry-ready silicon photoelectrodes with an impressive methane Faradaic efficiency of up to 51%, leading to a distinct turnover frequency of 2,176 h ?1 The researchers think that it could be recycling smokestack carbon dioxide into clean-burning fuel within 5-10 years. 1 under air mass 1.5 —lead author Baowen Zhou.
The new companies are focused on creating electrochemical systems that can help reduce carbon emissions in hard-to-decarbonize sectors and represent the program’s fourth cohort. Applications include green hydrogen production, hydrogen fuel cells and carbon capture and utilization (CCU).
The ambition is to generate one-third of its revenue from renewable energy projects and low-carbon solutions by 2025, and two-thirds by 2030. The blue crude process will use renewable electricity, water and CO 2 as feedstocks. The process starts when water vapor is broken down into hydrogen and oxygen.
Building on the company’s expertise in low-carbon ammonia production, clean ammonia will be manufactured using innovative technology to achieve at least a 90% reduction in CO 2 emissions. Geismar makes two grades of ammonia—conventional “gray ammonia” and low-carbon blue ammonia. Canada-based Nutrien Ltd. Source: Nutrien.
The water-atomized steel powder delivers mechanical properties superior to conventional metal manufacturing techniques, paving the way for advances in the use of 3-D printing technology for metal parts. —Rio Tinto Iron and Titanium Managing Director Stéphane Leblanc.
The hydrogen gas used in the direct reduction process is produced by electrolysis of water with fossil-free electricity, and can be used directly or stored for later use. The goal is to deliver fossil-free steel to the market and demonstrate the technology on an industrial scale as early as 2026.
In addition to hydrogen, other potential renewable fuels are being studied for future applications, and Wärtsilä engines are already capable of combusting 100% synthetic carbon-neutral methane and methanol. We are well positioned to serve the power industry in its transition to 100% renewable electricity generation.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. Westinghouse Electric Company, Front-End Engineering Designs and Investigative Studies for Integrating Commercial Electrolysis Hydrogen Production with Selected Light-Water Reactors.
Starfire Energy, a Colorado-based developer of modular chemical plants for the carbon-free production of ammonia and hydrogen, has closed a major funding round. Proceeds will be used to advance the development of commercial-scale applications to decarbonize ammonia production and unlock its potential as a zero-carbon energy carrier.
Research suggests that animal leather requires the emission of between 2-12 kg carbon dioxide equivalent per kg of animal leather produced and can vary greatly depending on where animals are raised, how tanning is achieved, etc. In addition to having an extremely low carbon footprint, MIRUM requires no water during manufacturing and dyeing.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content