This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa. This is equivalent to energy costs of US$60 a barrel.
Its hybrid electric and hydrogen powertrain aims to reduce downtime related to energy recharging while reducing the carbon footprint, including the battery. Renault Scénic Vision is zero emission in production and in use with a 75% smaller carbon footprint than a conventional battery electric vehicle.
Australia-based Woodside has signed an agreement with Japanese companies JERA Inc, Marubeni Corporation and IHI Corporation to undertake a joint study examining the large-scale export of hydrogen as ammonia for use decarbonizing coal-fired power generation in Japan. Green hydrogen is produced from renewable energy using electrolysis.
“Blue” hydrogen—produced through steam methane reforming (SMR) of natural gas or coal gasification, but with CO 2 capture and storage—is being described as having low or zero carbon emissions. Our analysis assumes that captured carbon dioxide can be stored indefinitely, an optimistic and unproven assumption.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbonhydrogen production. The hydrogen projects receiving funding are: Dolphyn. Acorn Hydrogen Project.
Norwegian state-owned energy company Equinor and Germany-based energy company RWE have agreed to work together to develop large-scale value chains for low carbonhydrogen. Building production facilities in Norway to produce low carbonhydrogen from natural gas with CCS. —Anders Opedal, Equinor’s CEO and president.
Toyota Motor and its subsidiary, Woven Planet Holdings have developed a working prototype of its portable hydrogen cartridge. This cartridge design will facilitate the everyday transport and supply of hydrogen energy to power a broad range of daily life applications in and outside of the home. Portable Hydrogen Cartridge (Prototype).
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. The open-access paper on the study is published in the RSC journal Energy & Environmental Science. Palmer et al.
An economic study by research group Steer, and commissioned by T&E, looked at future operating costs of hydrogen planes on intra-European flights and found that they could be an efficient, cost competitive technology to decarbonize the sector, provided kerosene is taxed adequately. (If GJ—approximately €0.37/L.)
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas. —Marco Wiren, President, Wärtsilä Energy Business.
Cemvita Factory announced multiple developments with its Gold Hydrogen business. Cemvita defines Gold Hydrogen as the biological production of hydrogen in the subsurface through the consumption of trapped or abandoned resources. The hydrogen production in this trial exceeded our expectations. billion in 2020.
The Saudi Arabian Oil Company (Aramco) signed five agreements with leading French companies, including an agreement to explore a hydrogen-powered vehicle business with Gaussin , a pioneer in clean and intelligent transport solutions. Gaussin hydrogen-powered Dakar racer. Additional MoUs.
RINA, the inspection, certification and consulting engineering multinational, and AFRY, a European leader in engineering, design, and advisory services, have undertaken an initial study of how the Gulf region and Europe could be linked directly with a pipeline to transport low-carbonhydrogen. kg in the longer term.
The results show there is no realistic pathway to full decarbonization of internal combustion engine vehicles, and that only battery and hydrogen fuel-cell EVs have potential to be very low-GHG passenger vehicle pathways. Based on stated policies, it accounts for changes in the carbon intensity during the useful lifetime of the vehicles.
Independent research and business intelligence company Rystad Energy estimates that there are about 91 planned hydrogen pipeline projects in the world, totaling 30,300 kilometers and due to come online by around 2035. New hydrogen infrastructure is starting to materialize as the world seeks to accelerate its path to net zero.
Hydrogen produced with renewable electricity could compete on costs with fossil fuel alternatives by 2030, according to a new report from the International Renewable Energy Agency (IRENA). The report— Green Hydrogen Cost Reduction: scaling up electrolyzers to meet the 1.5 Source: IRENA.
Rio Tinto has partnered with the Australian Renewable Energy Agency (ARENA) to study whether hydrogen can replace natural gas in alumina refineries to reduce emissions. This study will investigate a potential technology that can contribute to the decarbonization of the Australian alumina industry. Rio Tinto will conduct a $1.2-million
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.
FlyZero is the UK’s Aerospace Technology Institute (ATI) project aiming to realize zero-carbon emission commercial aviation by 2030. Funded by the Department for Business, Energy and Industrial Strategy, the project FlyZero began in early 2021 as an intensive research project investigating zero-carbon emission commercial flight.
jointly announced that, toward the achievement of carbon neutrality, they will take on the challenge of expanding fuel options through the use of internal combustion engines at the (three-hour) Super Taikyu Race in Okayama on 13-14 November. Continuing to race using hydrogen engines. Participating in races using carbon-neutral fuels.
An international collaboration of scientists has taken a significant step toward the realization of a nearly “green” zero-net-carbon technology that can efficiently convert CO 2 and hydrogen into ethanol. There has been much work on carbon dioxide conversion to methanol, yet ethanol has many advantages over methanol.
Conventional water electrolysis for the production of hydrogen faces technological challenges to improve the efficiency of the water-splitting reaction for the sluggish oxygen evolution reaction (OER). Oxygen and hydrogen are generated during a water electrolysis reaction (top right). —Associate Director Lee.
The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy. The project partners will generate zero-carbonhydrogen onsite via electrolysis with solar and wind power and reformation of renewable natural gas from a Texas landfill.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. Westinghouse Electric Company, Front-End Engineering Designs and Investigative Studies for Integrating Commercial Electrolysis Hydrogen Production with Selected Light-Water Reactors.
The research focuses on zero-carbonhydrogen and other low-carbon fuels as viable alternatives to diesel for the rail industry. The team’s goal is to reduce carbon emissions from the roughly 25,000 locomotives already in use in North America. billion pounds of carbon dioxide. a software developer.
Rolls-Royce and easyJet report the world’s first run of a modern aero engine on hydrogen. The ground test was conducted on an early concept demonstrator using green hydrogen created by wind and tidal power. The success of this hydrogen test is an exciting milestone. —Grazia Vittadini, Chief Technology Officer, Rolls-Royce.
California legislators have allocated UC San Diego $35 million to design and build a new coastal research vessel with a first-of-its-kind hydrogen-hybrid propulsion system. The study was funded by the US Department of Transportation’s Maritime Administration. Earlier post.)
The North American Council for Freight Efficiency (NACFE) released its latest Guidance Report , Making Sense of Heavy-Duty Hydrogen Fuel Cell Tractors. Almost every day there is a new announcement about hydrogen fuel cell electric trucks. We published this report to help make sense of hydrogen for commercial freight movement.
million in federal funding for cost-shared research and development projects under the funding opportunity announcement (FOA) FE-FOA 0002397 , University Turbines Systems Research (UTSR) — Focus on Hydrogen Fuels. There is renewed interest in the use of hydrogen, a clean-burning fuel, for turbine-based electricity generation.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
The company, which is launching a $500,000 capital raise via the online platform VCEX to fund the construction of its first modification prototype, says the results from their studies were very positive. There are multiple reasons why liquid ammonia was selected. —Aviation H2 Director, Dr Helmut Mayer.
Graphdiyne (GDY) is a new two-dimensional (2D) carbon allotrope, similar to graphene. Ammonia is by its nature a high-density hydrogen carrier. to release the hydrogen—their high cost is a challenge for widespread application, the authors note. —Liu et al.
Airbus is developing a hydrogen-powered fuel cell engine. The A380 MSN1 flight test aircraft for new hydrogen technologies is currently being modified to carry liquid hydrogen tanks and their associated distribution systems. There are two ways hydrogen can be used as a power source for aircraft propulsion. Earlier post.).
Siemens Energy, Duke Energy and Clemson University have teamed up to study the use of hydrogen for energy storage and as a low- or no-carbon fuel source to produce energy at Duke Energy’s combined heat and power plant located at Clemson University in South Carolina.
With clean hydrogen gaining recognition worldwide as a carbon-free fuel capable of making a significant contribution to addressing climate change, Southern California Gas Co. SoCalGas) will field test a new technology that can simultaneously separate and compress hydrogen from a blend of hydrogen and natural gas.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). A) An experimental setup for full microwave hydrogen production and (b) Schematic of the plasma reactor placed inside the microwave. Chehade et al.
KGaA (SHS) have signed a Memorandum of Understanding to explore the viability of transforming iron ore pellets into low-carbon hot briquetted iron (HBI) (a form of Direct Reduced Iron, DRI), a steel feedstock ( earlier post ) using green hydrogen generated from hydro-electricity in Canada. Earlier post.).
The design proved successful in generating hydrogen gas without producing large amounts of harmful byproducts. The results of their study, published in Joule , could help advance efforts to produce low-carbon fuels. A representation of the team’s bipolar membrane system that converts seawater into hydrogen gas.
As the global energy market shifts from coal, petroleum fuel, and natural gas to more environmentally friendly primary energy sources, hydrogen is becoming a crucial pillar in the clean energy movement. Understanding where the hydrogen goes under strain in a bulk material is critical to understanding embrittlement.
Ovako, a European manufacturer of steel and one of the largest steel recyclers in the Nordic countries, is inaugurating the hydrogen plant at its Hofors mill. Ovako’s hydrogen plant is the world’s first facility for producing fossil-free hydrogen to heat steel before rolling. A 2020 study by Zanoni et al. Earlier post.)
Pacific Gas and Electric Company (PG&E) is launching the US’ most comprehensive end-to-end hydrogenstudy and demonstration facility, which will examine the future potential of the zero-carbon fuel hydrogen as a renewable energy source for not only PG&E customers but the entire global natural gas industry.
bp is developing plans for the UK’s largest blue hydrogen production facility, targeting 1GW of hydrogen production by 2030. The project would capture and send for storage up to two million tonnes of carbon dioxide (CO?) Clean hydrogen is an essential complement to electrification on the path to net zero.
The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light. Photosynthesis is the process by which chloroplasts in plants and some organisms use sunlight, water and carbon dioxide to create food or energy.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content