This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Texas-based Nacero, a company seeking to produce low- and zero-lifecycle carbon footprint gasoline blendstock ( earlier post ) has awarded a subsidiary of NextEra Energy Resources, LLC a 20-year power purchase agreement to supply wind power to Nacero’s planned flagship manufacturing facility in Penwell, Texas. Renewable natural gas.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. The team uses green electricity to split water into hydrogen and oxygen in an electrolysis step.
Markus Krebber (RWE), accompanied by Chairman of the Mining, Chemical and Energy Industries Union (IG BCE) Michael Vassiliadis, presented a project idea that envisions a new 2 GW offshore wind farm in the German North Sea to provide the Ludwigshafen chemical site with green electricity and enable CO 2 -free production of hydrogen.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – low carbon hydrogen plant. Contract value: £3.12 million (US$4.1
Siemens Gamesa and Siemens Energy are joining forces to develop an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to produce green hydrogen directly. It is a prime example of enabling us to store and transport wind energy, thus reducing the carbon footprint of economy.
The Gigastack project, led by ITM Power, Ørsted, Phillips 66 Limited and Element Energy, will show how renewable hydrogen derived from offshore wind can support the UK’s 2050 net-zero greenhouse gas emission target. from an offshore wind farm—the process of producing hydrogen from water (electrolysis) can be decarbonized.
The Covid-19 crisis in 2020 triggered the largest annual drop in global energy-related carbon dioxide emissions since the Second World War, according to IEA data, but the overall decline of about 6% masks wide variations depending on the region and the time of year. But our numbers show we are returning to carbon-intensive business-as-usual.
All large-scale energy systems have environmental impacts, and the ability to compare the impacts of renewable energy sources is an important step in planning a future without coal or gas power. In the journal Joule , Harvard researchers report the most accurate modelling yet of how increasing wind power would affect climate.
UK-based Expleo, a global engineering, technology and consultancy service provider, has developed a closed-loop fuel solution for global shipping that delivers a 92% reduction in greenhouse gas emissions (GHGe) in the model vessel. Bibby Wavemaster 1, the model vessel.
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas. Hydrogen as part of the renewable electricity system of the future.
by Michael Sivak, Sivak Applied Research The overall advantage of battery electric over gasoline vehicles, in terms of well-to-wheels emissions of greenhouse gases, has been well documented. However, the emissions of electric vehicles depend greatly on the energy source used to generate the electricity that powers them.
Jacobson, professor of civil and environmental engineering at Stanford University, suggests that carbon capture technologies are inefficient and increase air pollution. All sorts of scenarios have been developed under the assumption that carbon capture actually reduces substantial amounts of carbon.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. The team will use gas or liquid buffering tanks and tight thermal integration between the air separation unit and the oxy-combustion turbine. 8 Rivers Capital.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The funding comes under Phase 2 of the Direct Air Capture and Greenhouse Gas Removal technologies competition. The carbon dioxide can then be permanently stored or used in various products or applications.
Mercedes-Benz Cars has entered into a power purchase agreement with Statkraft, Europe’s largest producer of renewable energy, enabling Mercedes-Benz Cars to source electricity directly from wind farms in Germany, whose subsidies from the Renewable Energy Act (EEG) expire after 2020. Statkraft is an important player in energy trading.
Audi’s e-gas plant. Audi has opened its e-gas plant in Werlte, making it the first automobile manufacturer to develop a chain of sustainable energy carriers. The Audi e-gas plant, which can convert 6MW of input power, utilizes renewable electricity for electrolysis to produce oxygen and hydrogen. Click to enlarge.
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. The new project is the first to pair a commercial electricity generator with high-temperature steam electrolysis (HTSE) technology. Earlier post.)
Audi is adding a new member to its A3 family: the A3 Sportback 30 g-tron natural gas vehicle. Operation with natural gas or biomethane makes the compact model economical and more climate-friendly with low emissions. With full gas tanks, the car has an NEDC range of up to 495 (307.6 The A3 Sportback 30 g-tron 1.5
A coalition of major oil & gas, power, automotive, fuel cell, and hydrogen companies have developed and released the full new report, a “ Road Map to a US Hydrogen Economy. ” Analytical support was provided by McKinsey and scientific observations and technical input was provided by the Electric Power Research Institute.
The basis behind the new generation of ultracapacitor devices is Skeleton’s patented carbide-derived carbon (CDC) SkeletonC material, which enables the modification of pore size and structure at the single nanometer level. Carbides are compounds composed of carbon and a less electronegative element (e.g., silicon carbide, SiC).
US electric power sector CO 2 emissions have declined 28% since 2005 because of slower electricity demand growth and changes in the mix of fuels used to generate electricity, according to the US Energy Information Administration (EIA). Source: US EIA, US Energy-Related Carbon Dioxide Emissions , 2017.
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). This synthesis consumes only CO 2 and electricity, and is constrained only by the cost of electricity.
The SMUD (2020 Sacramento Municipal Utility District) Board of Directors adopted a climate emergency declaration that commits to working toward an ambitious goal of delivering carbon-neutral electricity by 2030. Furthermore, SMUD has reduced the carbon intensity of its power mix, which is now 50% carbon-free on average.
An analysis of near-term spending plans on renewables by the biggest oil and gas companies shows that real investments in renewable energy will continue to pale in comparison to capex plans for greenfield fossil fuel projects. Indeed, much of Big Oil's reduction in greenhouse gas (GHG) emissions leans on the so-called natural gas bridge.
H2@Scale in Texas and Beyond intends to show that renewable hydrogen can be a cost-effective fuel for multiple end-use applications, including fuel cell electric vehicles, when coupled with large, baseload consumers that use hydrogen for clean, reliable stationary power.
In the period 2016-2020, the port of Rotterdam reduced its total carbon emissions by 27%. of the Netherlands’ total carbon emissions: a share that several years ago was 16%. of the Netherlands’ total carbon emissions: a share that several years ago was 16%. Last year, Rotterdam’s power plants cut their carbon emissions by 1.9
In Japan, Aichi Prefecture, Chita City, Toyota City, Chubu Electric Power, Toho Gas, Toyota Motor Corporation, and Toyota Industries have launched the Chita City and Toyota City Renewable Energy-use Low-carbon Hydrogen Project. Hydrogen is a useful energy source for realizing a low-carbon society. Main points.
The system uses proprietary technology to autonomously orchestrate the lifting and lowering of the bricks, storing the potential energy in the elevation gain, and generating then discharging electricity as the bricks are lowered. Depending on feedstock carbon content, DGF produces up to 3.6 barrel per ton of feedstock.
This year’s outlook is the first to highlight the significant impact that falling battery costs will have on the electricity mix over the coming decades. BNEF predicts that lithium-ion battery prices, already down by nearly 80% per megawatt-hour since 2010, will continue to tumble as electric vehicle manufacturing builds up through the 2020s.
In addition to its regional and temporal scope, this study is distinct from earlier LCA literature in four key aspects: This study considers the lifetime average carbon intensity of the fuel and electricity mixes, including biofuels and biogas.
These relate to electrolysis systems for producing hydrogen, both on land and in offshore wind parks, equipment for producing methane, the use of gas engines in cars, ships and CHP plants, and concepts for energy systems that efficiently couple the transport, electrical power, gas and heating sectors.
The minimum 10-year deal will reduce lifecycle emissions by up to 340,647 metric tons of carbon dioxide per year, beginning with the first expected SAF deliveries in 2026. These changes eliminate the need for carbon sequestration and reduce the system’s feed-stock handling costs and complexity.
A team at Argonne National Laboratory’s Systems Assessment Center has evaluated the well-to-wheel (WTW) greenhouse gas (GHG) emissions of Fischer–Tropsch (FT) fuels produced via various electrolytic H 2 pathways and CO 2 sources; using various process designs (i.e., Zang et al.
The collapse in world oil prices in the second half of 2014 will have only a moderate impact on the fast-developing low-carbon transition in the world electricity system, according to research firm Bloomberg New Energy Finance. Saudi Arabia burns up to 900,000 barrels of oil per day to generate over 50% of its electricity.
A plant for liquefied renewable natural gas (bio-LNG) is also in development. This project demonstrates a new kind of energy future and a model of lower-carbon energy production that can be replicated worldwide. The Rheinland electrolyzer will use renewable electricity to produce up to 1,300 tonnes of green hydrogen a year.
The falling cost of making hydrogen from wind and solar power offers a promising route to cutting emissions in some of the most fossil-fuel-dependent sectors of the economy, such as steel, heavy-duty vehicles, shipping and cement, according to a new report from BloombergNEF (BNEF). kg in most parts of the world before 2050. MMBtu) in 2050.
Statoil has made the final investment decision to build the world’s first floating wind farm: The Hywind pilot park offshore Peterhead in Aberdeenshire, Scotland. The wind farm will power around 20,000 households. Statoil is proud to develop the world’s first floating wind farm. Production start is expected in late 2017.
The US Department of Energy announced $33 million in funding for 17 projects as part of the Advanced Research Projects Agency-Energy’s (ARPA-E) Aviation-class Synergistically Cooled Electric-motors with iNtegrated Drives (ASCEND) and Range Extenders for Electric Aviation with Low Carbon and High Efficiency (REEACH) programs.
Deep declines in wind, solar and battery technology costs will result in a grid nearly half-powered by the two fast-growing renewable energy sources by 2050, according to the latest projections from BloombergNEF (BNEF). Electricity demand is set to increase 62%, resulting in global generating capacity almost tripling between 2018 and 2050.
Energy company RWE and steel producer ArcelorMittal have signed a memorandum of understanding to work together to develop, build and operate offshore wind farms and hydrogen facilities that will supply the renewable energy and green hydrogen required to produce low-emissions steel in Germany.
The only inputs needed are water and renewable electricity from wind, hydro power or photovoltaics. thyssenkrupp says that its solution makes large-scale hydrogen production from electricity economically attractive. It will provide the necessary hydrogen for producing chemicals from steel plant flue gas. 20 MW module.
Ørsted, the world’s leading offshore wind developer, together with the major industrial companies in the North Sea Port cluster, have launched the SeaH2Land vision for a gigawatt scale project to reduce carbon emissions in the Dutch-Flemish industrial cluster with renewable hydrogen.
Project Volt Gas Volt is based on a long-term financing plan and the use of existing technologies for the large-scale conversion of surplus renewable electricity to methane, with subsequent reuse. Project VGV uses surplus electricity generated by renewable and nuclear sources to produce hydrogen via electrolysis. Earlier post.).
After growing by more than 2% in 2019, global gas use is set to fall by around 4% in 2020, as the COVID-19 pandemic reduces energy consumption across the global economies. The report shows that medium-term growth will come from increasing cost-competitiveness and increased global access to gas. Low-carbongas.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content