This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. This will significantly reduce overall CO 2 emissions.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light. Photosynthesis is the process by which chloroplasts in plants and some organisms use sunlight, water and carbon dioxide to create food or energy.
Canada-based Carbon Engineering Ltd. (CE) CE) has received equity investment from two global energy companies: Oxy Low Carbon Ventures, LLC (OLCV), a subsidiary of Occidental Petroleum Corporation; and Chevron Technology Ventures (CTV), the venture capital arm of Chevron Corporation. since 2015.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. Jet fuel can then be obtained from the products after industrially recognized treatments such as distillation or hydro-isomerization. Fe 5 C 2 respectively.
Researchers in Europe led by a team from ETH Zurich have designed a fuel production system that uses water, CO 2 , and sunlight to produce aviation fuel. We are the first to demonstrate the entire thermochemical process chain from water and CO 2 to kerosene in a fully-integrated solar tower system. Zoller et al.
BMW i Ventures has invested in Prometheus Fuels ( earlier post ), a company removing CO 2 from the air and turning it into zero-net carbon gasoline that it will sell at gas stations, at a price that competes with fossil fuels, starting as early as this year. to C 2 fuel products such as ethanol.
DG Fuels (DGF), a provider of cellulosic drop-in sustainable aviation fuel (SAF), signed a multi-year SAF offtake agreement with Air France KLM for up to 60,408 metric tons (21 million gallons) per year from DGF’s initial plant to be located in Louisiana. Schematic of DGFuels Sustainable Aviation Fuel Process.
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. DG Fuels expects to complete its Louisiana SAF project by mid-2022.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Alongside hydrogen generation from water, the multi-disciplinary research team is investigating photochemical conversion of carbon dioxide into synthetic fuel.
FlyZero is the UK’s Aerospace Technology Institute (ATI) project aiming to realize zero-carbon emission commercial aviation by 2030. Funded by the Department for Business, Energy and Industrial Strategy, the project FlyZero began in early 2021 as an intensive research project investigating zero-carbon emission commercial flight.
jointly announced that, toward the achievement of carbon neutrality, they will take on the challenge of expanding fuel options through the use of internal combustion engines at the (three-hour) Super Taikyu Race in Okayama on 13-14 November. Participating in races using carbon-neutral fuels.
China-based SANY, one of the largest construction equipment manufacturers in the world, is developing hydrogen fuel cell construction vehicles; two recent examples include a dump truck and a mixer truck, freshly rolled out of SANY’s intelligent flagship factory. The latter is the first hydrogen-powered mixer truck in the world.
Aker Solutions has signed a contract with Nordic Blue Crude (NBC) for front-end engineering and design (FEED) of a new e-Fuel facility at Herøya in Porsgrunn, Norway. The e-Fuel plant is planned to produce CO 2 -neutral fuel by using green hydrogen and furnace gas from an existing factory.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). A paper on their work appears in the journal Fuel. (A) Ionization, recombination, decomposition of water vapor occur at the tip of the ceriated tungsten.
Texas-based fuel company Nacero ( earlier post ) will build its second low- and zero-carbonfuels plant in Newport Township, Pennsylvania. The new manufacturing facility will produce low- and zero-lifecycle carbon footprint gasoline blendstock made from natural gas and renewable natural gas.
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis. Source: Prof.
Hyundai Motor Group will collaborate with the Saudi Arabian Oil Company (Aramco) and King Abdullah University of Science and Technology (KAUST) jointly to research and develop an advanced fuel for an ultra lean-burn, spark-ignition engine that aims to lower the overall carbon dioxide emissions of a vehicle.
There is an accompanying need to develop new low-cost and low-carbon technologies for hydrogen production. Aurora Hydrogen is scaling its proprietary and highly efficient microwave pyrolysis technology to produce hydrogen and solid carbon from natural gas without generating CO 2 emissions or consuming water.
Brookhaven National Laboratory, and the National Renewable Energy Laboratory (NREL) will work over the next few years to bring to market high-temperature proton exchange membrane (HT-PEM) fuel cells. Artist’s concept of a heavy-duty vehicle equipped with high-temperature proton exchange membrane (HT-PEM) fuel cells.
MAHLE has developed two standardized air filter solutions for fuel cells. The new MAHLE air filters for cells with an output of 25–50 kW or 80–120 kW reliably protect fuel cells from harmful gases and particles, ensuring the operation of the fuel cell over the entire service life of a vehicle and minimizing the use of expensive catalysts.
Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convert carbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity. Methanol is a promising renewable fuel that can be adapted to the current liquid fuel infrastructure.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – low carbon hydrogen plant. Contract value: £3.12 million (US$4.1 Contract value: £7.48
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting. 202300951
Airbus is developing a hydrogen-powered fuel cell engine. Airbus will start ground and flight testing this fuel cell engine architecture onboard its ZEROe demonstrator aircraft towards the middle of the decade. A hydrogen gas turbine can also be coupled with fuel cells instead of batteries in a hybrid-electric architecture.
Researchers at the University of Delaware have demonstrated a direct ammonia fuel cell (DAFC) prototype with a peak power density of 135 mW cm ?2. Source-to-tank cost comparison of carbon-neutral transportation fuels. Their paper is publishedin the journal Joule. Zhao et al. Assisted by a $2.5-million Assisted by a $2.5-million
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al. —Shannon Boettcher.
Building on the company’s expertise in low-carbon ammonia production, clean ammonia will be manufactured using innovative technology to achieve at least a 90% reduction in CO 2 emissions. Geismar makes two grades of ammonia—conventional “gray ammonia” and low-carbon blue ammonia. Canada-based Nutrien Ltd. Source: Nutrien.
In a commentary in the journal Joule , Rob McGinnis, founder and and CEO of Prometheus , a company that is developing technology to remove carbon dioxide from the air and turn it into fuels, discusses the technology advances that could lead to the potential price-competitiveness of renewable gasoline and jet with fossil fuels.
and HCS Group GmbH, a long-time customer of Gevo, have signed a project memorandum of understanding (MOU) to develop and to build a renewable hydrocarbon facility at HCS Group’s site located in Speyer, Germany, which would utilize Gevo’s low-carbon sustainable aviation fuel (SAF) technology: Alcohol-to-Jet Synthetic Paraffinic Kerosene.
Carbon transformation company Twelve (formerly Opus 12, earlier post ) has produced the first fossil-free jet fuel—called E-Jet—from CO 2 electrolysis, demonstrating a scalable, energy-efficient path to the de-fossilization of global aviation. Since you can’t electrify the plane, we’ve electrified the fuel.
Lithium chemicals derived from hard rock sources such as spodumene can be more than three times as carbon-intensive as that from brine sources, according to Benchmark Mineral Intelligence’s (Benchmark Minerals’) Lithium ESG Report. Processing hard rock lithium sources is also more water-intensive than that of brines.
The M-Series units are methanol reformers that use water plus methanol to make hydrogen. The units uses two input streams (methanol/water mix and combustion air) and produces two output streams (product H 2 and combustion exhaust). Source: e1. —Dave Edlund, e1 CEO.
Toyota is developing a regenerative fuel cell for the manned pressurized rover (nicknamed the “ Lunar Cruiser ”) for the lunar polar exploration mission (LUPEX), part of projects led by the Japan Aerospace Exploration Agency (JAXA). One of those is the regenerative fuel cell (RFC) system. Earlier post.)
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( the ocean and surface waters) that received their CO 2 directly from ambient air. DE-FOA-0002481 ).
ASTM International has approved and published a sixth pathway for the production of sustainable aviation fuel (SAF). The latest annex to the SAF specification, D7566, establishes criteria for the production and use of catalytic hydrothermolysis jet fuel (CHJ), a type of synthetic kerosene. Catalytic hydrothermolysis to jet fuel.
ETH Zurich spin-off Synhelion has started the construction of DAWN—its own industrial plant to produce synthetic fuels using solar heat. Located in Jülich, Germany, the facility will demonstrate the entire process from concentrating sunlight to producing synthetic liquid fuel on an industrial scale. Earlier post.)
As the core of its hydrogen business, Honda will further advance its fuel cell system. With the next-generation fuel cell system being co-developed with General Motors (GM), Honda will aim to more than double the durability and reduce the cost to one-third, in comparison to the fuel cell system installed in the 2019 Honda Clarity Fuel Cell.
DG Fuels, LLC (DGF), a developer of sustainable aviation fuel (SAF) facilities ( earlier post ), announced the successful closing of investment transactions with two Japanese companies. The basis of DGF’s integrated fuel and energy technology is the proven Fischer-Tropsch process, in use for more than 60 years.
and Toyota Motor Corporation have jointly developed a fuel cell power supply vehicle that uses hydrogen to generate electricity. The project has been selected by Japan’s Ministry of the Environment as a “Low Carbon Technology Research and Development Program.”. Verification tests for the vehicle will start in September 2020.
Toyota can control abnormal combustion by precisely controlling fuel injection and using hydrogen in the tank more efficiently. Carbon-neutral fuel. Toyota is entering a new GR86-based vehicle that uses carbon-neutral fuel as an attempt to expand internal combustion engine fuel options. Earlier post.).
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content