This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Icelandair.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
The new catalyst contains cobalt interspersed with nitrogen and carbon. The development of catalysts free of platinum-group metals and with both a high activity and durability for the oxygen reduction reaction in proton exchange membrane fuel cells is a grand challenge. The Co–N–C catalyst achieved a current density of 0.022?A?cm
A joint research team from City University of Hong Kong (CityU) and collaborators have developed a stable artificial photocatalytic system that is more efficient than natural photosynthesis. The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light.
Ricardo has developed a hydrogen-fueled research engine which could offer a renewable, economic and durable technology solution to accelerate zero-carbon emissions in heavy duty trucks, off-highway machines and marine vessels.
Researchers from Queen Mary University of London and University College London (UCL) have produced graphene via a special, scalable technique and used it to develop hydrogen fuel cell catalysts. Platinum is the most widely used catalyst for fuel cells, but its high cost is a big problem for the commercialization.
Universal Hydrogen announced $20.5-million Founded in 2020 by aviation industry veterans Paul Eremenko, John-Paul Clarke, Jason Chua, and Jon Gordon, Universal Hydrogen is stitching together the end-to-end hydrogen value chain for aviation, both for hydrogen fuel and hydrogen-powered airplanes.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. Jet fuel can then be obtained from the products after industrially recognized treatments such as distillation or hydro-isomerization.
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel.
A team of researchers at the Institute of Technological Sciences at Wuhan University has demonstrated a prototype design of a propulsion thruster that utilizes air plasma induced by microwave ionization. There is no need for fossil fuel with our design, and therefore, there is no carbon emission to cause greenhouse effects and global warming.
Hyundai Motor Group will collaborate with the Saudi Arabian Oil Company (Aramco) and King Abdullah University of Science and Technology (KAUST) jointly to research and develop an advanced fuel for an ultra lean-burn, spark-ignition engine that aims to lower the overall carbon dioxide emissions of a vehicle.
The SOLETAIR project ( earlier post ) has produced its first 200 liters of synthetic fuel from solar energy and the air’s carbon dioxide via Fischer-Tropsch synthesis. The mobile chemical pilot plant produces gasoline, diesel, and kerosene from regenerative hydrogen and carbon dioxide. The SOLETAIR project started in 2016.
Cranfield Aerospace Solutions (CAeS)—the UK SME leading the Project Fresson consortium—will exploit recent advances in hydrogen fuel cell technology to develop a commercially viable, retrofit powertrain solution for the nine-passenger Britten-Norman Islander aircraft.
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique selectively to produce methane, carbon monoxide or formic acid from carbon dioxide and water.
Norway-based TECO2030, a provider of specifically designed modular fuel cell system for heavy-duty marine applications, and AVL List GmbH have signed a collaboration agreement under which TECO2030s fuel cell stacks will be deployed in AVL’s DemoTruck which is powered by the HyTruck Fuel Cell System.
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – low carbon hydrogen plant. Led by Cranfield University. Contract value: £3.12
Researchers at the University of Delaware have demonstrated a direct ammonia fuel cell (DAFC) prototype with a peak power density of 135 mW cm ?2. Source-to-tank cost comparison of carbon-neutral transportation fuels. Their paper is publishedin the journal Joule. Zhao et al. Assisted by a $2.5-million Assisted by a $2.5-million
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
Mexico-based global construction materials company CEMEX is partnering with integrated chemicals and energy company Sasol ecoFT and renewable energy company ENERTRAG to combine CO 2 with hydrogen to produce sustainable aviation fuel. To reach carbon neutrality, these emissions must be captured, stored, or repurposed in some way.
Solid oxide fuel cells (SOFCs) offer high energy efficiency and fuel flexibility, but require high operating temperatures. The CSSFC shows enhanced power density with hydrocarbon fuels at lower operating temperatures. such a carbonate superstructure on solid ionic conductor would be an oxygen ionic superconductor.
A study by University of Chicago economist Esteban Rossi-Hansberg, the Glen A. Lloyd Distinguished Service Professor in Economics, and José-Luis Cruz of Princeton University assesses the local social cost of carbon (LSCC) and how that cost aligns with the carbon reduction pledges countries made under the Paris Agreement.
Initiated by MAN with partners from industry and research institutes, it aims to define the steps necessary to produce a dual-fuel, medium-speed engine capable of running on diesel-fuel and ammonia. MAN Energy Solutions Two-Stroke Business has already announced that it will deliver ammonia-fueled engines by 2024.
Washington State University researchers have developed an innovative way to convert waste polyethylene plastic to ingredients for jet fuel and other valuable products, making it easier and more cost-effective to reuse plastics. The maximum yields of the jet-fuel- and lubricant-range hydrocarbons were 60.8 wt %, respectively.
Carbon transformation company Twelve (formerly Opus 12, earlier post ) has produced the first fossil-free jet fuel—called E-Jet—from CO 2 electrolysis, demonstrating a scalable, energy-efficient path to the de-fossilization of global aviation. Since you can’t electrify the plane, we’ve electrified the fuel.
Researchers in the US and China have developed a catalyst that solves three key problems long associated with direct ethanol fuel cells (DEFCs): low efficiency, the cost of catalytic materials and the toxicity of chemical reactions inside the cells. The first vehicle powered by an ethanol-based fuel cell was developed in 2007, Feng said.
Emory DeCastro, Advent’s Chief Technology Officer, added that these developments have the potential to drop overall fuel cell system costs by 25% and enable higher power density and simplify packaging constraints. This is especially important for long haul trucks using hydrogen fuel cells. —Dr.
Universal Hydrogen, magniX, Plug Power and AeroTEC have established a Hydrogen Aviation Test and Service Center at Grant County International Airport in Moses Lake, Washington. Universal Hydrogen’s Dash-8 conversion will be the first commercially-relevant hydrogen-powered aircraft, serving 41 to 60 passengers on routes up to 1,000 kilometers.
Siemens Energy, Duke Energy and Clemson University have teamed up to study the use of hydrogen for energy storage and as a low- or no-carbonfuel source to produce energy at Duke Energy’s combined heat and power plant located at Clemson University in South Carolina.
ETH Zurich spin-off Synhelion has started the construction of DAWN—its own industrial plant to produce synthetic fuels using solar heat. Located in Jülich, Germany, the facility will demonstrate the entire process from concentrating sunlight to producing synthetic liquid fuel on an industrial scale. Earlier post.)
Syzygy is advancing a new photocatalytic chemical reactor that could significantly reduce the cost and carbon emissions in the production process for a wide range of major chemicals such as fuel, fertilizer, and plastic.
A team from the University of Buffalo (UB), Purdue University, Oak Ridge National Laboratory (ORNL), Argonne National Laboratory (ANL), the University of Pittsburgh and Carnegie Mellon University (CMU), with colleagues from other institutions, has developed a highly durable and active Fe–N–C catalyst for proton-exchange membrane fuel cells.
Fuel cells based on methanol oxidation have potential for the motor and technical industries. A group of researchers from Far Eastern Federal University (FEFU), Austria, Turkey, Switzerland, and the UK has developed a new metallic glass that is 85% more efficient in oxidizing methanol than its platinum-based analogs. Credit: FEFU.
(CMAL) to partner in designing a hydrogen fuel-cell sea-going passenger and car ferry—a first for Europe. The HySeas III string test will consist of the following components: Fuel cell system (consisting of 6 100kW Ballard HD-100 fuel cells). This is part of HYSEAS III , a Horizon 2020 funded project ( earlier post ).
The ceramic membrane reactor also separates carbon dioxide more efficiently, enabling the greenhouse gas to be easily transported and sequestered. This is an important step on the road to making hydrogen far more practical as a fuel. The process also has a low carbon footprint.
Biofuels producer Renewable Energy Group joined Iowa State University (ISU) at the BioCentury Research Farm (BCRF) to mark the start of a new hydrotreater pilot plant. This project is the result of a three-year collaboration between REG and the ISU Bioeconomy Institute.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. Excess energy produced by photovoltaics and wind energy could be stored through the electrocatalytic production of fuels from CO 2. These could then be burned as needed. Credit: Angewandte Chemie. and Xiong, Y.
million in federal funding for cost-shared research and development projects under the funding opportunity announcement (FOA) FE-FOA 0002397 , University Turbines Systems Research (UTSR) — Focus on Hydrogen Fuels. There is renewed interest in the use of hydrogen, a clean-burning fuel, for turbine-based electricity generation.
Yavuz of King Abdullah University of Science and Technology (KAUST), Prof. Bo Liu from University of Science and Technology of China (USTC), and Prof. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. Xiang et al.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. Flexible Oxy-Fuel Combustion for High-Penetration Variable Renewables - $717,658. Colorado State University. University of Pittsburgh.
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( DOE supports the search for carbon removal solutions at both the basic and applied science levels. DE-FOA-0002481 ).
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content