Remove Carbon Remove Engine Remove Water
article thumbnail

Researchers produce green syngas using CO2, water and sunlight

Green Car Congress

Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. This will significantly reduce overall CO 2 emissions.

Water 504
article thumbnail

HyMethShip seeks to fuel ship engines with hydrogen from methanol

Green Car Congress

The EU-funded HyMethShip project developed a system that innovatively combined a membrane reactor, a CO 2 capture system, a storage system for CO 2 and methanol as well as a hydrogen-fueled combustion engine to power ships. The bottom part shows how hydrogen for the engine is obtained from methanol in the reactor (blue arrow).

Hydrogen 480
article thumbnail

Occidental Petroleum and Chevron invest in direct air carbon capture and synthetic fuels company Carbon Engineering

Green Car Congress

Canada-based Carbon Engineering Ltd. (CE) CE) has received equity investment from two global energy companies: Oxy Low Carbon Ventures, LLC (OLCV), a subsidiary of Occidental Petroleum Corporation; and Chevron Technology Ventures (CTV), the venture capital arm of Chevron Corporation.

Chevron 351
article thumbnail

Wärtsilä gas engines to burn 100% hydrogen

Green Car Congress

The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas. Hydrogen as part of the renewable electricity system of the future.

Hydrogen 468
article thumbnail

Vulcan to collaborate with DuPont on Zero Carbon Lithium extraction process

Green Car Congress

Vulcan Energy Resources will collaborate with DuPont Water Solutions,a leader in water filtration and purification, to test and to scale up Direct Lithium Extraction (DLE) solutions for Vulcan’s Zero Carbon Lithium extraction process. Earlier post.). Francis Wedin, Managing Director. Stringfellow and Patrick F.

Carbon 435
article thumbnail

Study finds the wettability of porous electrode surfaces is key to making efficient water-splitting or carbon-capturing systems

Green Car Congress

As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential.

Water 418
article thumbnail

MIT researchers boost efficiency of carbon capture and conversion systems

Green Car Congress

Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.

MIT 413