Remove Carbon Remove Energy Storage Remove Ni-Li Remove Resource
article thumbnail

Researchers in China develop high-voltage-resistant electrolyte for ultrahigh voltage Li metal batteries

Green Car Congress

As reported in an open-access paper in the RSC journal Energy & Environmental Science , Li||LiNi 0.8 Li||NCM811 cells with a thin (50 ? With the increasing demand for rechargeable batteries with a high energy density (? For example, with increasing nickel content, Ni?rich off voltages of 4.7 off voltage (> 4.5

Ni-Li 170
article thumbnail

Stanford researchers develop new electrolysis system to split seawater into hydrogen and oxygen

Green Car Congress

Existing water-splitting methods rely on highly purified water—a precious resource and costly to produce. Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. However, grid-scale freshwater electrolysis would put a heavy strain on vital water resources.

Hydrogen 249
article thumbnail

Researchers call for integration of materials sustainability into battery research; the need for in situ monitoring

Green Car Congress

In a review paper in the journal Nature Materials , Jean-Marie Tarascon (Professor at College de France and Director of RS2E, French Network on Electrochemical Energy Storage) and Clare Gray (Professor at the University of Cambridge), call for integrating the sustainability of battery materials into the R&D efforts to improve rechargeable batteries.

Li-ion 150
article thumbnail

RIKEN team develops high-performance lithium-iodine battery system with higher energy density than conventional Li-ion

Green Car Congress

The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Energy density was ~0.35 Zhao et al.

Li-ion 255
article thumbnail

Yale team introduces new Li-O2 cell architecture with mesoporous catalytic membrane; improved cycling stability

Green Car Congress

Schematic illustration of a Li-O 2 cell employing a mesoporous catalytic polymer membrane. A modified Li-O 2 battery with a catalytic membrane showed a stable cyclability for 60 cycles with a capacity of 1000 mAh/g and a reduced degree of polarization (?0.3 Credit: ACS, RYu et al. Click to enlarge.

Ni-Li 225
article thumbnail

High-capacity, high-rate Li-ion battery for HEV or EVs; mixed oxide cathode and Sn-C anode

Green Car Congress

Korea) are developing a new advanced lithium-ion battery featuring a high capacity Sn-C nanostructured anode and a high rate, high-voltage Li[Ni 0.45 Enhancements in energy density necessarily require the passage from the present lithium ion technology to novel, advanced chemistries based on high performance electrode materials.

Li-ion 225
article thumbnail

Faradion demonstrates proof-of-concept sodium-ion electric bike

Green Car Congress

Although lithium-ion batteries are currently the predominant battery technology in electric and hybrid vehicles, as well as other energy storage applications, sodium-ion could offer significant cost, safety and sustainability benefits. Faradion’s sodium-ion cells deliver a specific energy of more than 140 Wh/kg. Earlier post.).

Sodium 150