This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). The process is constrained by the (low) cost of electricity. —Johnson et al.
Heliogen’s AI-enabled concentrated solar energy system is designed to create carbon-free steam, electricity, and heat from abundant and renewable sunlight. When combined with Bloom’s proprietary solid oxide, high-temperature electrolyzer, hydrogen can be produced 45% more efficiently than low-temperature PEM and alkaline electrolyzers.
Using an inexpensive polymer called melamine, researchers from UC Berkeley, Texas A&M and Stanford have created a cheap, easy and energy-efficient way to capture carbon dioxide from smokestacks. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption.
The team projects that the high-efficiency vehicle will have a a minimum unit cost of only $1,400 to produce—the price of an average mountain bike—once the funding goal is reached. The VEGAN is a lightweight multipurpose hybrid electric-self-charging solar tricycle. The team has not yet produced a working demo for their concept.
LeMond Composites, founded by three-time Tour de France champion Greg LeMond, has licensed a low-cost, high-volume carbon fiber manufacturing process developed at the US Department of Energy’s Oak Ridge National Laboratory (ORNL). Earlier post.)
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – lowcarbon hydrogen plant. Contract value: £3.12 million (US$4.1
Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. But until now, flow batteries have relied on chemicals that are expensive or hard to maintain, driving up the cost of storing energy. Background.
Methane derived from CO 2 and renewable H 2 sources is an attractive fuel, and it has great potential as a renewable hydrogen carrier as an environmentally responsible carbon capture and utilization approach. —Heldebrant et al. Different methods for converting CO 2 into methane have long been known.
A team at Imperial College London has examined the relative costs of carbon mitigation from a lifecycle perspective for 12 different hydrogen production techniques using fossil fuels, nuclear energy and renewable sources. Their results show a trade-off between the cost of mitigation and the proportion of decarbonization achieved.
The UK’s Carbon Trust recently awarded £1.95 million) to two UK fuel cell companies—ACAL Energy and ITM Power—to help deliver a step change reduction in the cost of the technology to about $35/kW. Significant additional technological breakthroughs are needed to achieve this target of a 30% cost reduction.
The report— Green Hydrogen Cost Reduction: scaling up electrolyzers to meet the 1.5 C climate goal —looks at drivers for innovation and presents strategies that governments can peruse to reduce the cost of electrolyzers by 40% in the short term and by up to 80% in the long term.
Researchers at Stanford University, with colleagues at Oak Ridge National Laboratory and other institutions, have developed a nickel-based electrocatalyst for low-cost water-splitting for hydrogen production with performance close to that of much more expensive commercial platinum electrocatalysts.
Stuart Licht reports that the addition of carbon nanotubes (CNTs) produced from CO 2 by low-energy C2CNT (CO 2 to CNT) molten electrolysis ( earlier post ) to materials such as concrete or steel not only forms composites with significantly better properties, but amplifies the reduction of CO 2. A) Carbon mitigation with CNT-cement. (B)
Based upon research of city/urban usage, eMO has the flexibility—with rear seats articulated—to do double-duty as a personal cargo carrier, without the mass and cost of a dedicated trunk. With sustainability in mind, eMO benefits from a lowcarbon footprint and a recyclability strategy.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. The post-combustion outlet gas is more easily separated into water and CO 2 to the pipeline, thereby lowering the electricity costs of grids with high levels of VRE.
Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. The photoreactors have a low level of complexity, are readily manufacturable via mass fabrication techniques in polymers, and are easy to adapt to diverse photocatalysts.
million from the US Department of Energy (DOE) to develop and validate technology that will reduce the cost of manufacturing high-performance carbon fiber by 25% to make composite natural gas or hydrogen fuel tanks to power cars and trucks. The Institute for Advanced Composites Manufacturing Innovation (IACMI) will receive $2.7
LeMond Carbon announced the results of an independent technical audit conducted by Bureau Veritas (BV) of its carbon fiber manufacturing process. The audit was conducted on a pilot line at Deakin University’s Carbon Nexus facility in Geelong, Australia. From Bureau Veritas audit of LeMond’s carbon fiber manufacturing process.
A team led by Dr. Stuart Licht at The George Washington University in Washington, DC has developed a low-cost, high-yield and scalable process for the electrolytic conversion of atmospheric CO 2 dissolved in molten carbonates into carbon nanofibers (CNFs.) Atmospheric air is added to an electrolytic cell.
Calysta says that in contrast to current algae- and sugar-based methods, a methane-based biofuel platform is expected to produce fuel at less than half the cost of other biological methods, allowing direct competition with petroleum-based fuels. Carbon feedstock. Comparison of biofuel platform efficiency (source: Calysta Energy).
78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other gases) added—it is actually evacuated from the process so there is zero combustion inside the rotary reformer. In Steam CO 2 Reforming, there is no oxygen or air (i.e. 22 CCR § 66260.10 Definitions and 40 CFR § 260.10 Definitions).
ARPA-E’s first solicitation awarded $151 million to 37 projects aimed at transformational innovations in energy storage, biofuels, carbon capture, renewable power, building efficiency, vehicles, and other areas. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel. Earlier post.) Engineering E. per gallon.
This expansion of our product offering enables zero-carbon electricity and transportation solutions. Bloom Energy announced in June 2019 that its fuel cells could run on hydrogen to generate zero-carbon electricity. Generating low-cost hydrogen from intermittent renewables is a sine qua non for decarbonization.
The falling cost of making hydrogen from wind and solar power offers a promising route to cutting emissions in some of the most fossil-fuel-dependent sectors of the economy, such as steel, heavy-duty vehicles, shipping and cement, according to a new report from BloombergNEF (BNEF). Abatement cost with hydrogen at $1/kg (7.4/MMBtu).
Friend Family Distinguished Professor of Engineering, have been exploring the use of low-cost materials to create rechargeable batteries that will make energy storage more affordable. This magnified image shows aluminum deposited on carbon fibers in a battery electrode. A paper on the work is published in Nature Energy.
The reverse reaction may have a similarly transformative potential, where the decomposition of ammonia into nitrogen and hydrogen enables the provision of hydrogen for a low-carbon energy economy. The material costs, however, are very significantly less, the team observed. —David et al.
California-based Carbon Sciences, Inc. Carbon Sciences says it will design its plant to produce gasoline cost-effectively from the thousands of available small- and medium-size natural gas fields. The syngas production section accounts for more than 50% of the capital cost of a methanol plant. —Byron Elton, CEO.
The operating and maintenance cost of in-service compressors is exacerbated by the on/off cycling of the compressors resulting from a lack of station demand. The capital cost of the commercial hardware remains high due to low production volumes. Storage Cost Reduction Opportunities.
The US Department of Energy (DOE) selected eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency, low-costcarbon dioxide capture from coal-fired power plants. DOE Investment: $988,000; Recipient Cost-Share: $828,000. Gas Technology Institute.
Ranges of automotive fuel cell system costs at mass manufactured volume using technology from three UK companies supported by the Carbon Trust. Source: Carbon Trust. Cost savings can be achieved by reducing material costs (notably platinum use), increasing power density, reducing system complexity and improving durability.
The new PNNL carbon capture and conversion system brings the cost to capture CO 2 down to about $39 per metric ton. Just as one can choose between single-use and recyclable materials, so too can one recycle carbon. The team brought the cost of capture down to $47.10 per metric ton of CO 2 in 2021.
Department of Energy (DOE) grant to continue their research in developing low-cost, high-strength carbon fiber. The funding was part of DOE’s strategy to invest in discovery and development of novel, low-cost materials necessary for hydrogen storage and for fuel cells onboard light-duty vehicles.
COBRA incorporates environmental impact studies to help ensure that the carbon footprint of the end product is reduced, by eliminating cobalt and other toxic or scarce elements, while using metal components with recyclability of more than 95%. The project launched earlier this year and will run until January 2024. 50% pack weight reduction.
EPFL scientists have developed an Earth-abundant and low-cost catalytic system for splitting CO 2 into CO and oxygen—an important step towards achieving the conversion of renewable energy into hydrocarbon fuels. Using only Earth-abundant materials to catalyze both reactions, this design keeps the cost of the system low.
Swedish and Chinese researchers have fashioned a novel nano-alloy composed of palladium nano-islands embedded in tungsten nanoparticles supported on ordered mesoporous carbon as an efficient fuel cell catalyst. In a paper in the journal Nature Communications , they reported that despite a very low percentage of noble metal (?palladium:tungsten=1:8),
The US Department of Energy has selected 16 projects for almost $29 million in funding to develop advanced post-combustion technologies for capturing carbon dioxide from coal–fired power plants. Carbon Capture Scientific. Awardee Project description. The application of ultrasonic energy forces dissolved CO 2 into gas bubbles.
DE-FOA-0002423 ) Topic Areas ins the FOA support DOE’s Bioenergy Technologies Office’s (BETO’s) objectives to reduce the minimum selling price of drop-in biofuels, lower the cost of biopower, and enable high-value products from biomass or waste resources. Improvements in productivity with traditional carbon dioxide (CO 2 ) supply.
Teijin Limited is developing a non-platinum carbon alloy catalyst (CAC) for the cathode oxygen reduction reaction (ORR) in polymer electrolyte fuel cells. CAC is made from polyacrylonitrile (PAN) and steel via carbonization. —Chai et al. 2010.01.012. 2010.01.012.
million for technologies that produce low-cost, low-carbon biofuels. ( million for technologies that produce low-cost, low-carbon biofuels. ( municipal solid waste, biosolids) into low-carbon biofuels and bioproducts.
The US Department of Energy (DOE) announced the award of approximately $72 million in federal funding to support the development and advancement of carbon capture technologies under two funding opportunity announcements (FOAs). Enabling Production of LowCarbon Emissions Steel Through CO 2 Capture from Blast Furnace Gases.
Researchers at the University of Delaware, with a colleague at the Beijing University of Chemical Technology, have developed a composite catalyst—nickel nanoparticles supported on nitrogen-doped carbon nanotubes—that exhibits hydrogen oxidation activity in alkaline electrolyte similar to platinum-group metals. —Zhuang et al.
The Clean Carbon Conductors team, with members from Rice University and DexMat Co, is designing enhanced-conductivity CNTs by improving fiber quality, alignment, packing density, and by electrochemically doping the CNTs. Each winning team has earned a $25,000 cash prize and a stipend for third-party conductivity testing in Stage 2.
Shockwave’s Thermodynamic Corn Fractionation Process is a front-end corn fractionation platform that uses high velocity air and pressure changes to fractionate solid materials, providing an novel, low-cost approach to separating the corn kernel into the various fractions including a higher-starch feed for fermentation as well as germ and fiber.
However, the high cost and scarcity of Pt prohibits its application to fulfil the energy demand. Thus, lowering the cost of HER catalysts is of paramount importance for clean, scalable and sustainable energy. To lower the catalysts cost, a natural abundant alternative and low-cost scalable synthesis are required.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content