This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
A joint research team from City University of Hong Kong (CityU) and collaborators have developed a stable artificial photocatalytic system that is more efficient than natural photosynthesis. The new system mimics a natural chloroplast to convertcarbon dioxide in water into methane, very efficiently using light.
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. 2020) “Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst.” H 2 O) on catalytically active sites on ?-Fe Makgae, O.A.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
Researchers at Illinois Institute of Technology (IIT), with colleagues at the University of Pennsylvania and the University of Illinois at Chicago have developed an electrolyzer capable of convertingcarbon dioxide into propane in a manner that is both scalable and economically viable. —Esmaeilirad et al.
On 26 July, the first flue gas from the natural gas power plant, the Shepard Energy Center in Calgary, Canada, was directly transformed by the C2CNT process ( earlier post ) into carbon nanotubes. Carbon nanotubes grown by C2CNT directly from carbon dioxide (SEM and TEM imaging). Left and center. Earlier post.).
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on convertingcarbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
Washington State University researchers have developed an innovative way to convert waste polyethylene plastic to ingredients for jet fuel and other valuable products, making it easier and more cost-effective to reuse plastics. For the process, the researchers used a ruthenium on carbon catalyst and a commonly used solvent.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. However, the electrocatalytic formation of products with two or more carbon atoms (C 2+ ) is very challenging. These could then be burned as needed. Credit: Angewandte Chemie. and Xiong, Y.
Ricardo has developed a hydrogen-fueled research engine which could offer a renewable, economic and durable technology solution to accelerate zero-carbon emissions in heavy duty trucks, off-highway machines and marine vessels.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Zepler Institute, University of Southampton.
Professor Yutaka Amao of the Osaka City University Artificial Photosynthesis Research Center and Ryohei Sato, a 1 st year Ph.D. student of the Graduate School of Science, have shown that the catalyst formate dehydrogenase reduces carbon dioxide directly to formic acid. New Journal of Chemistry doi: 10.1039/D0NJ01183E.
Researchers at the University of have developed an unusually rapid method to deliver cost-effective algal biocrude in large quantities using a specially-designed jet mixer. Algal biocrude obtained from CIJMs converts successfully into biodiesel, and cascades of CIJMs increase the net lipid production. Yen-Hsun Tseng, Swomitra K.
Rice University researchers have won a $3.3-million million Advanced Research Projects Agency - Energy (ARPA-E) OPEEN+ grant to develop a method to convert natural gas into carbon nanotubes for materials that can replace metals in large-scale applications. The process would also produce valuable hydrogen as a side product.
Researchers from University of Girona (Spain) successfully used electrically efficient microbial electrosynthesis cells (MES) to convert CO 2 to butyric acid. In an open-access paper published in the journal Environmental Science and Ecotechnology , they reported operating the low ohmic resistance (15.7 At an applied current of 1.0
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A) —Saadi et al.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
A new material that can selectively capture CO 2 molecules and efficiently convert them into useful organic materials has been developed by researchers at Kyoto University, along with colleagues at the University of Tokyo and Jiangsu Normal University in China. —Wu et al.
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —Dr Wang.
Researchers at Changsha University of Science & Technology in China have used spent asphalt to produce a high-performance universal Li/Na/K-ion anode material. As an anode material for Li-ion batteries, the mesoporous carbon exhibits a reversible capability of 674.2 —Xie et al. —Xie et al. 2021.230593.
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel. Leung et al.
Biofuels producer Renewable Energy Group joined Iowa State University (ISU) at the BioCentury Research Farm (BCRF) to mark the start of a new hydrotreater pilot plant. REG converts waste and byproduct fats and oils into biodiesel and renewable diesel.
Universal Hydrogen, magniX, Plug Power and AeroTEC have established a Hydrogen Aviation Test and Service Center at Grant County International Airport in Moses Lake, Washington. Universal Hydrogen’s Dash-8 conversion will be the first commercially-relevant hydrogen-powered aircraft, serving 41 to 60 passengers on routes up to 1,000 kilometers.
Researchers at Linköping University, Sweden, are attempting to convertcarbon dioxide to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique selectively to produce methane, carbon monoxide or formic acid from carbon dioxide and water.
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). —Jennifer Holmgren, CEO of LanzaTech.
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( DOE supports the search for carbon removal solutions at both the basic and applied science levels. DE-FOA-0002481 ).
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
The new catalyst contains cobalt interspersed with nitrogen and carbon. Here we report an atomically dispersed Co and N co-doped carbon (Co–N–C) catalyst with a high catalytic oxygen reduction reaction activity comparable to that of a similarly synthesized Fe–N–C catalyst but with a four-time enhanced durability. —Yuyan Shao.
An international research team has now copied this principle, and used nanoparticles to convertcarbon dioxide into ethanol and propanol. In the present work, the German-Australian team showed that the electrochemical reduction of carbon dioxide can take place with the help of the nanozymes. Credit: ACS, O’Mara et al.
The SOLETAIR project ( earlier post ) has produced its first 200 liters of synthetic fuel from solar energy and the air’s carbon dioxide via Fischer-Tropsch synthesis. The mobile chemical pilot plant produces gasoline, diesel, and kerosene from regenerative hydrogen and carbon dioxide.
An Ohio State University team has demonstrated the successful operation of Coal-Direct Chemical Looping (CDCL)—which chemically harnesses coal’s energy and efficiently contains the carbon dioxide produced before it can be released into the atmosphere. The carbon dioxide is separated and can be recycled or sequestered for storage.
Researchers at Korea University have developed high-performance, textile-based electrodes for watersplitting (WSE); the non-noblemetal-based electrodes can generate a large amount of hydrogen with low overpotentials and high operational stability. —Mo et al. 2 and a low cell voltage of 1.70
Via Mobility Services, a local nonprofit social enterprise, operates Boulder’s HOP transit route, a high-frequency shuttle service serving Boulder hotspots like the University of Colorado campus and Downtown Boulder. People in Boulder are very interested in reducing the carbon footprint in all that we do.
Researchers from Washington State University and Tufts University have “ unambiguously ” shown for the first time that individual Pt atoms on a well-defined Cu 2 O film are able to perform CO oxidation (i.e., Carbon monoxide to carbon dioxide. —Jean-Sabin McEwen. —Charles Sykes.
The team will dramatically lower system costs by reducing precious metals, such as platinum, from the electrodes and developing new catalysts based on carbon nanotubes and metal organic frameworks. The University of California Los Angeles. The University of South Carolina. Lead organization. Palo Alto Research Center.
SoCalGas) is partnering with a development team to advance a new process that converts natural gas to hydrogen, carbon fiber, and carbon nanotubes. The technology commercialization team includes SoCalGas, C4, Pacific Northwest National Laboratory (PNNL) and West Virginia University (WVU). Southern California Gas Co.
These project teams will pursue methods to create high-value carbon and hydrogen from methane (four projects, $14.4 The methane cohort teams will focus on industrially scalable ways to produce high quality carbon and hydrogen. The methane cohort awards: Rice University. Palo Alto Research Center, Inc.
Researchers at Drexel University have stabilized a rare monoclinic ?-sulfur sulfur phase within carbon nanofibers that enables successful operation of Lithium-Sulfur (Li-S) batteries in carbonate electrolyte for 4000 cycles. AN open-access paper on their work is published in Communications Chemistry. —Pai et al.
Twenty-three of the projects receiving funding are headed by universities, eight are led by the Energy Department’s National Laboratories and one project is run by a non-profit organization. University of California, Berkeley. University of California, Riverside. Northwestern University. FY 2014 EFRC Awards. Georgia Tech.
Catalytic converters for cleaning exhaust emissions are more efficient when they use nanoparticles with many edges, according to a study carried out at the the Deutsches Elektronen-Synchrotron (DESY), a research center of the Helmholtz Association, X-ray source PETRA III. Credit: DESY, Lucid Berlin. Click to enlarge.
Our work shows that protonic membranes can make hydrogen from ammonia, natural gas and biogas so efficiently that hydrogen fuel cell cars will have lower carbon footprint than electric cars charged from the electricity grid. The result is a thermally balanced process that makes hydrogen with near zero energy loss.
A team of Brown University researchers has fine-tuned a copper catalyst to produce complex hydrocarbons—C 2+ products—from CO 2 with high efficiency. By converting CO 2 into products of higher value, a closed-loop carbon economy begins to emerge. An open-access paper on the work is published in Nature Communications.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content