This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convertcarbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity. A paper on the work is published in the journal Chem. —Rayder et al.
The new system mimics a natural chloroplast to convertcarbon dioxide in water into methane, very efficiently using light. Photosynthesis is the process by which chloroplasts in plants and some organisms use sunlight, water and carbon dioxide to create food or energy. over 24 hours.
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. Jet fuel can then be obtained from the products after industrially recognized treatments such as distillation or hydro-isomerization. —Yao et al. Makgae, O.A.
Researchers at Illinois Institute of Technology (IIT), with colleagues at the University of Pennsylvania and the University of Illinois at Chicago have developed an electrolyzer capable of convertingcarbon dioxide into propane in a manner that is both scalable and economically viable. —Esmaeilirad et al.
Washington State University researchers have developed an innovative way to convert waste polyethylene plastic to ingredients for jet fuel and other valuable products, making it easier and more cost-effective to reuse plastics. For the process, the researchers used a ruthenium on carbon catalyst and a commonly used solvent.
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel. Leung et al. In addition, Zi et al.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on convertingcarbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
Carbon transformation company Twelve and biotechnology company LanzaTech have transformed CO 2 emissions into ethanol as a part of an ongoing research and development partnership. Our process aims to rebalance the overabundance of carbon in our environment and instead reuse it for meaningful applications.
Transform Materials has developed a novel and sustainable microwave plasma reactor process to convert natural gas into high-value hydrogen and acetylene, thereby opening up a new pathway for green chemical manufacturing. Oxidation of methane also introduces impurities in the product stream.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. Excess energy produced by photovoltaics and wind energy could be stored through the electrocatalytic production of fuels from CO 2. In contrast, pure copper foil produces C 1 products but hardly any C 2+ products.
Lithium chemicals derived from hard rock sources such as spodumene can be more than three times as carbon-intensive as that from brine sources, according to Benchmark Mineral Intelligence’s (Benchmark Minerals’) Lithium ESG Report. The majority of spodumene is mined in Australia where it is processed into spodumene concentrate.
Greenergy will invest in Front End Engineering Design (FEED) of a project to produce low-carbon transportation fuels from waste tires. In the first phase, the planned facility will process up to 300 tons of shredded tires each day to produce low-carbon, low-sulfur drop-in fuels that can be blended into diesel and gasoline.
Olive Creek 1 in Hallam, Nebraska is Monolith Materials’ first commercial-scale emissions-free production facility designed to produce approximately 14,000 metric tons of carbon black annually along with clean hydrogen. Monolith Materials is the first US manufacturer to produce “turquoise hydrogen” on a commercial scale.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
HydroWing, in partnership with Tocardo, introduced the THyPSO (Tidal Hydrogen production, Storage and Offtake), a concept that creates green hydrogen from the sea, contributing to the wider global decarbonization of energy systems. THyPSO has capacity to hold up to two weeks’ worth of hydrogen production in pressurized storage tanks.
estimated that with conversion by hydrothermal liquefaction (HTL) and upgrading, the wet waste resource availability in the United States could be converted to jet fuel that is equivalent to about 24% of the U.S. Skaggs et al. demand in 2016. GLE and $0.9/GLE. Meanwhile, the plant size has a great impact on the MFSP. —Ou et al.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Alongside hydrogen generation from water, the multi-disciplinary research team is investigating photochemical conversion of carbon dioxide into synthetic fuel.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. A well-established downstream syngas-to-synfuel conversion process, such as Fischer-Tropsch synthesis, converts the syngas to liquid synfuel for a total projected cost of less than $4/gallon.
A team of Brown University researchers has fine-tuned a copper catalyst to produce complex hydrocarbons—C 2+ products—from CO 2 with high efficiency. By converting CO 2 into products of higher value, a closed-loop carbon economy begins to emerge. student Taehee Kim.
Researchers from University of Girona (Spain) successfully used electrically efficient microbial electrosynthesis cells (MES) to convert CO 2 to butyric acid. mΩ m 2 ) cells in a batch-fed mode, alternating high CO 2 and hydrogen (H 2 ) availability to promote the production of acetic acid and ethanol. At an applied current of 1.0
Researchers at the Department of Energy’s Pacific Northwest National Laboratory have developed a new method to convert captured CO 2 into methane, the primary component of natural gas. Different methods for converting CO 2 into methane have long been known. Different methods for converting CO 2 into methane have long been known.
Researchers at the Swiss Federal Institute of Technology (ETH) Zurich, Switzerland, have developed a carbon-supported platinum nanoparticle catalyst that can achieve complete hydrocracking of polypropylene into liquid hydrocarbons (C 5 –C 45 ). The platinum phase controls the activity, while the carbon carrier regulates selectivity.
Located near Beulah, North Dakota, the Synfuels Plant will be transformed into the largest and lowest-cost, blue hydrogen production facility in the United States. This production will use locally sourced feedstock and employ established production and carbon capture processes.
Strategic Biofuels announced that its Carbon Capture and Sequestration (CCS) Test Well Program was successfully completed at the company’s Louisiana Green Fuels Project (LGF) in Caldwell Parish, Louisiana. Deep carbon negativity greatly increases the potential carbon credit revenues from our fuel and vastly improves the project’s returns.
Stora Enso is investing €10 million to build a pilot facility for producing bio-based carbon materials based on lignin. Wood-based carbon can be utilized as a crucial component in batteries typically used in consumer electronics, the automotive industry and large-scale energy storage systems.
Their research shows that converting a Falcon 50 to Liquid Ammonia Turbofan Combustion is the most efficient and commercially viable avenue to building a hydrogen-powered plane. Additionally, worldwide transportation and handling of liquid ammonia has been around for many years, making ammonia as a carbon-free fuel even more appealing.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A) —Saadi et al.
The BMW i Hydrogen NEXT is a pure electric vehicle that uses hydrogen as fuel by converting it into electricity in a fuel cell. The BMW i Hydrogen NEXT uses fuel cells from the product development cooperation with the Toyota Motor Corporation. The fuel cell system delivers an electrical output of 125 kW/170 hp.
Production of the Audi Q4 e-tron has finally started in Zwickau. At the multi-brand plant in Zwickau, the Audi Q4 e-tron will be rolling off the same production line as the Volkswagen ID.4 The Volkswagen plant there has been converted to an all-electric plant and is now an integral part of the Group’s electric offensive.
To tackle these issues, a team led by Pacific Northwest National Laboratory (PNNL) researchers Ji-Guang (Jason) Zhang and Xiaolin Li has developed a nanostructure that limits silicon’s expansion while fortifying it with carbon. The composite electrodes of carbon-nanotube@silicon@carbon-graphite with a practical loading (3?mAh?cm
VERBIO has commenced production at its new plant in Nevada, Iowa. During this process, raw biogas is produced comprising about 55% methane and 45% carbon dioxide. Carbon dioxide and other impurities are removed through a biogas treatment process, leaving nearly pure biomethane gas which is chemically equivalent to fossil natural gas.
Volkswagen has begun conversion of its Emden, Germany plant to support the production of Evs; the first electric cars are to roll off the production line there from 2022. With the conversion of our plant at Emden into a production location for electric vehicles, Volkswagen is forcing the pace of system change. 4 and the ID.3
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). —Jennifer Holmgren, CEO of LanzaTech.
The new MINI Cooper SE Convertible (combined power consumption: 17.2kWh/100 km according to WLTP) ( earlier post ) will be the first series model to be produced with alloy wheels that are made entirely from recycled aluminum. With the use of secondary materials that have a carbon footprint of less than 0.16
The USDA ARS and BIOF are cooperating to develop production methods which can be used to increase the productivity of land in Florida formerly used for orange production prior to the devastation of the industry by citrus greening. Lignin may be further converted into biodegradable bioplastics or used in ion exchange resins.
The plant will produce carbon-neutral fuel—enough to decarbonize more than 400,000 vehicles annually. eFuels are produced by combining green hydrogen made from renewable power and recycled carbon dioxide. Start of construction is expected by 2023 and first production by 2026. Earlier post.)
Origin Materials has developed technology which turns sustainable wood residues into cost-advantaged, carbon-negative materials that reduce the need for fossil resources. The Origin platform converts C-6 cellulose into four isolated building-block chemicals in one chemo-catalytic step in liquid-phase reactors with almost zero carbon loss.
The companies are joining efforts to implement the carbon-negative UBQ thermoplastic ( earlier post ) into auto parts manufactured by Motherson Group for the automotive industry. kg of CO 2 -e per kilogram during their production process. UBQ GHG is added to product formulations as a Master Batch Additive.
Instead, the refinery will be repurposed to become a producer of low-carbon renewable fuels that meet the needs of the California Low Carbon Fuels Standard. As an existing oil refinery, the refinery already has a significant portion of the necessary equipment in place for the production of renewable diesel.
The aim of the funding project is to ensure the mass production and series ramp-up of the decentralized SOFC technology up to the start of series production. The heart of the system is the SOFC stack, where chemical energy is converted into electrical energy. A hotbox will contain several stacks.
Fulcrum produce biofuel on a commercial scale by chemically converting municipal solid waste (MSW) into transportation fuels. Fulcrum’s process combines gasification technology with a Fischer-Tropsch (FT) fuel process for the efficient, low-cost production of renewable transportation fuels. Founded in Pleasanton, Calif.,
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content