This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. The research team encapsulated a supported Ru/TiO 2 catalyst within the polymer layers of an imine-based porous organic polymer that controls its selectivity.
One possible way to counteract rising global CO 2 emissions is to capture and sequester carbon from the atmosphere, but current methods are highly energy intensive. The new material is a porous coordination polymer (PCP, also known as MOF; metal-organic framework), a framework consisting of zinc metal ions. —Wu et al.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A) —Saadi et al.
Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).
The companies are joining efforts to implement the carbon-negative UBQ thermoplastic ( earlier post ) into auto parts manufactured by Motherson Group for the automotive industry. UBQ GHG Neutralizer additives enable processors to directly compensate cO 2 -equivalent emissions (GHG) generated by plastic polymers. UBQ Industrial Grade.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
The assistant professor and William Marsh Rice Trustee Chair of Chemical and Biomolecular Engineering has proposed the development of a modular electrochemical system that will provide “a sustainable, negative-carbon, low-waste and point-source manufacturing path preferable to traditional large-scale chemical process plants.”.
The US Department of Energy (DOE) will award ( DE-FOA-0000996 ) up to $12 million in funding to advance the development of a cost-competitive pathway to produce high-performance carbon fiber for vehicle lightweighting from renewable non-food biomass. Reducing a vehicle’s weight by just 10% can improve fuel economy by 6% to 8%.
A team of researchers from North Carolina State University, SINTEF in Norway and the Norwegian University of Science and Technology, has developed a polymer membrane technology that removes carbon dioxide from mixed gases with both high permeability and high selectivity. A paper on their work is published in the journal Science.
The catalytic process is an alternative route to ethane steam cracking, offering the potential of economic advantages, acetic acid co-production and significantly lower overall carbon footprint through electrification of power input. —John van der Velden, Senior Vice President Global Sales & Technology at Linde Engineering.
Sketch of the Sn/C/CGPE/ Li 2 S/C polymer battery. The battery is formed by a Sn/C composite anode, a PEO-based gel polymer electrolyte, and a Li 2 S/C cathode. 8Li 2 S discharge process, we propose to fabricate the battery in the “discharged” state by using a carbon lithium sulfide composite as the cathode. Click to enlarge.
PCC 6803 cells holding ethylene forming enzyme (Efe) from Pseudomonas syringae are entrapped within a natural polymer matrix, thus forming the thin-layer biocatalytic structure. The team optimized the production system by varying different parameters, such as radiance, inorganic carbon level, and periodicity of medium renewal.
Scientists at Stanford University have developed electrochemical cells that convert carbon monoxide (CO) derived from CO 2 into commercially viable compounds more effectively and efficiently than existing technologies. 1 ), low cell voltages, and high single-pass CO conversion, leading directly to concentrated product streams.
Researchers at the Swiss Federal Institute of Technology (ETH) Zurich, Switzerland, have developed a carbon-supported platinum nanoparticle catalyst that can achieve complete hydrocracking of polypropylene into liquid hydrocarbons (C 5 –C 45 ). The platinum phase controls the activity, while the carbon carrier regulates selectivity.
The US Department of Energy has selected six projects for funding that aim to find ways of converting captured carbon dioxide emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. The project team plans to process CO 2 -laden flue gas from a Capital Aggregates, Ltd. DOE Share: $25,000,000).
A team of researchers from Canada and the US has developed a system that quickly and efficiently converts carbon dioxide into simple chemicals via CO 2 electrolysis. The electrode architecture enables production of two-carbon products such as ethylene and ethanol at current densities just over an ampere per square centimeter.
Carbon transformation company Twelve (formerly Opus 12, earlier post ) has produced the first fossil-free jet fuel—called E-Jet—from CO 2 electrolysis, demonstrating a scalable, energy-efficient path to the de-fossilization of global aviation. Global aviation produces 1.2 —Twelve Co-Founder and CEO Nicholas Flanders.
More work is needed to understand and to optimize the reaction, but this approach could offer an easy and inexpensive way to recapture some of the carbon dioxide emitted by vehicles and power plants, says Christopher Cummins, an MIT professor of chemistry and leader of the research team. —Christopher Cummins.
Methane, the key component in natural gas, is usually just burned for heat, combining with oxygen in the atmosphere to form carbon dioxide, the predominant greenhouse gas. Oxidation of methane also introduces impurities in the product stream. To avoid these undesirable outcomes, methane must be broken down without oxygen.
LeMond Composites, founded by three-time Tour de France champion Greg LeMond, has licensed a low-cost, high-volume carbon fiber manufacturing process developed at the US Department of Energy’s Oak Ridge National Laboratory (ORNL). Earlier post.)
Using an inexpensive polymer called melamine, researchers from UC Berkeley, Texas A&M and Stanford have created a cheap, easy and energy-efficient way to capture carbon dioxide from smokestacks. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption.
and LanzaTech Ltd, two industrial biology companies, have begun a feasibility study to examine whether Global Bioenergies’ artificial isobutene pathway ( earlier post ), can be functionally transferred into LanzaTech’s carbon monoxide-using organism ( earlier post ). Global Bioenergies S.A. Jennifer Holmgren, LanzaTech CEO.
Startup Mattershift says it has achieved a breakthrough in making carbon nanotube (CNT) membranes at large scale. The paper is a characterization study of commercial prototype carbon nanotube (CNT) membranes consisting of sub–1.27-nm-diameter A) SEM image of the CNT membrane surface, showing CNT tips emerging from the polymer.
The US Department of Energy (DOE) announced the award of approximately $72 million in federal funding to support the development and advancement of carbon capture technologies under two funding opportunity announcements (FOAs). Enabling Production of Low Carbon Emissions Steel Through CO 2 Capture from Blast Furnace Gases. Chevron USA.
When the nickel catalyst of ceramic fuel cells is used with hydrocarbon fuels, such as methane, propane, and butane, the carbon generated during fuel conversion is deposited on the surface of nickel. This worsens seriously as the temperature lowers, leading to the failure of the cell operation.
The findings could spur progress on developing a variety of materials and designs for electrochemical carbon dioxide conversion systems. Depending on the material choice for the electrocatalysis, a certain variety of products is expected from the carbon dioxide reduction reaction (CO 2 RR).
Grzegorz Milczarek from Poznan University of Technology (Poland), and Olle Inganäs from Linköping University (Sweden), have combined lignin derivatives, which are electronic insulators, with polypyrole, a conductive polymer, into an interpenetrating composite suitable for use as a battery cathode. —Milczarek and Inganäs. 1215159.
The following Stanford faculty members received funding for advanced research on photovoltaics, battery technologies and new catalysts for sustainable fuels: Self-healing polymers for high energy density lithium-ion batteries. Maximizing solar-to-fuel conversion efficiency in photo-electrochemical cells. Light trapping in high?efficiency,
In CO fermentation, explained LanzaTech Communications Director Freya Burton, CO can serve as the carbon and the energy source whereas CO 2 can serve only as the carbon source. Accordingly, LanzaTech has begun look at the industrial conversion of acetic acid/acetate to lipids, and has demonstrated this. Earlier post.).
In a forecast of the Lithium market through 2017, Roskill Information Services estimates that rechargeable batteries will, in the base-case growth scenario, contribute 75% of the growth in forecast lithium demand to 2017, when total demand for lithium is expected to reach slightly more than 238,000t lithium carbonate equivalent (LCE).
2,3BD is a key chemical building block used to make polymers, plastics and hydrocarbon fuels; it can be readily converted to intermediaries such as butenes, butadiene and methyl ethyl ketone that are used in the production of hydrocarbon fuels and a variety of chemicals including polymers, synthetic rubbers, plastics and textiles.
Carbon transformation company Twelve and biotechnology company LanzaTech have transformed CO 2 emissions into ethanol as a part of an ongoing research and development partnership. Our process aims to rebalance the overabundance of carbon in our environment and instead reuse it for meaningful applications.
This material, a p-type (100) gallium phosphide (GaP) semiconductor functionalized with molecular hydrogen-producing cobaloxime catalysts via polymer grafting, has the potential to address one of the major challenges in the use of artificial photosynthesis to make renewable solar fuels. Earlier post.) Under simulated air mass 1.5
PEM fuel cells are good examples of energy conversion systems that have several levels of interacting functional structures. Polymer electrolyte membrane (PEM) fuel cells employ a hydrophobic polymer, functionalized by acidic sidechains, as the electrode separator. Promislow and Wetton.
ARPA-E’s first solicitation awarded $151 million to 37 projects aimed at transformational innovations in energy storage, biofuels, carbon capture, renewable power, building efficiency, vehicles, and other areas. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel. Earlier post.) Engineering E.
Department of Energy (DOE) grant to continue their research in developing low-cost, high-strength carbon fiber. The center’s Carbon Materials Technologies Group received the award for a project titled “Precursor Processing Development for Low Cost, High Strength Carbon Fiber for Composite Overwrapped Pressure Vessel Applications.”
Researchers at The University of Texas at Arlington have been the first to demonstrate that polyaniline (PANI), a member of the organic conducting polymer family, is a promising photocathode material for the conversion of carbon dioxide into alcohol fuels without the need for a co-catalyst.
If successful, this could allow storage of renewable electricity through electrochemical or enzymatic fixation of carbon dioxide and subsequent storage as carbon-based energy storage molecules including hydrocarbons and non-volatile polymers at high efficiency.
Researchers at Texas A&M have developed a two-step, one-pot conversion of CO 2 and epoxides (highly reactive compounds with a three-membered ring made of two carbon atoms and one oxygen atom) to polycarbonate block copolymers that contain both water-soluble and hydrophobic regions and can aggregate into nanoparticles or micelles.
. … we present in this work the synthesis of small, uniformly distributed Li 2 S, particles homogeneously coated by a nitrogen-doped carbon layer. The preparation procedure is based on the carbothermal reduction of Li 2 SO 4 in the presence of a carbon precursor, added as the nanoparticle stabilizing amphiphilic polymer. …
LanzaTech, a producer of low-carbon fuels and chemicals from waste gases, and Petronas, the national oil company of Malaysia, will work together to accelerate the development and commercialization of technologies to produce sustainable fuels and chemicals using CO 2 as the carbon source. LanzaTech conceptual gas-to-liquids platform.
Scientists from Stanford University, SLAC National Accelerator Laboratory and the Technical University of Denmark have identified a new nickel-gallium catalyst that converts hydrogen and carbon dioxide into methanol at ambient pressure and with fewer side-products than the conventional catalyst. You want to make methanol, not carbon monoxide.
The three-member team used a membrane-electrode assembly in which the polymer bipolar membrane is compressed between two rigid porous electrodes, allowing them to make a large number of bipolar membranes with different water dissociation catalyst layers. —Sebastian Oener.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content