Remove Carbon Remove Conversion Remove Organization
article thumbnail

Novel tin-based metal–organic frameworks for reducing carbon dioxide to formate

Green Car Congress

Researchers from Tokyo Tech have developed a tin-based metal–organic framework (MOF) that can photocatalytically reduce carbon dioxide (CO 2 ) into formate under visible light. The ongoing demand for carbon-rich fuels to drive the economy keeps adding more carbon dioxide (CO 2 ) to the atmosphere. —Prof.

Carbon 413
article thumbnail

UCLA team proposes non-photosynthetic biological conversion of CO2

Green Car Congress

Most of us naturally associate biological CO 2 conversion with photosynthesis in plants and algae. Furthermore, the maximum efficiency of solar energy conversion by photosynthesis is 5%, while typical solar panel efficiency reaches 20%. If these are achieved, carbon yield and productivity can be greatly accelerated (e.g.,

article thumbnail

Phillips 66 progressing its conversion of California refinery to renewable fuels

Green Car Congress

In April, the company completed the diesel hydrotreater conversion, which will ramp up to 8,000 bbl/d (120 million gallons per year) of renewable diesel production by the third quarter of 2021. Subject to permitting and approvals, full conversion of the refinery is expected in early 2024. Earlier post.).

article thumbnail

Molten carbonate electrolysis can produce a range of carbon nanomaterials, including graphene, from CO2 at high yield

Green Car Congress

Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis. Source: Prof.

Carbon 376
article thumbnail

Stanford engineers develop catalyst strategy to improve turnover frequencies for CO2 conversion to hydrocarbons by orders of magnitude

Green Car Congress

Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. The research team encapsulated a supported Ru/TiO 2 catalyst within the polymer layers of an imine-based porous organic polymer that controls its selectivity.

article thumbnail

Oxford team directly converts CO2 to jet fuel using iron-based catalysts

Green Car Congress

The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). In brief, the Fe–Mn–K catalyst shows a CO 2 conversion of 38.2%

Convert 505
article thumbnail

ExxonMobil, UC Berkeley, Berkeley Lab develop new MOF for carbon capture and steam regeneration

Green Car Congress

Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).

Carbon 414