Remove Carbon Remove Conversion Remove Ni-Li
article thumbnail

Sulfur nanodots on nickel foam as high-performance Li-S cathode materials; carbon- and binder-free

Green Car Congress

A team at Nankai University in China has devised high-performance Li-sulfur battery cathode materials consisting of sulfur nanodots (2 nm average) directly electrodeposited on flexible nickel foam; the cathode materials incorporate no carbon or binder. However, the electrochemical inertness of bulk sulfur in the cathode of Li?S

Ni-Li 150
article thumbnail

U Akron team develops Mn-based high performance anode for Li-ion batteries

Green Car Congress

Researchers at the University of Akron have developed hierarchical porous Mn 3 O 4 /C nanospheres as anode materials for Li-ion batteries. mA/g), excellent ratability (425 mAh/g at 4 A/g), and extremely long cycle life (no significant capacity fading after 3000 cycles at 4A/g) as an anode in a Li-ion battery. Li/Li + ).

Li-ion 199
article thumbnail

Optimized catalyst for biomass gasification for production of synthetic fuels

Green Car Congress

A team from the Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences reports on a pilot-scale biomass-gasification-reforming system with optimized catalyst to produce synthesis gas for liquid fuel synthesis in the ACS journal Energy & Fuels. Credit: ACS, Wang et al.

Fuel 220
article thumbnail

NETL investigating researching chemistries for large-scale battery- and supercapacitor-based grid energy storage systems

Green Car Congress

This includes research on appropriate anodes, cathodes, and electrolytes for magnesium (Mg)-, sodium (Na)-, and lithium (Li)-based batteries and novel transition metal oxide- and nitride-based supercapacitor electrode materials. Magnesium is much more abundant in the Earth’s crust, making it less expensive than Li by a factor of 24.

article thumbnail

GWU team demonstrates relatively efficient electrochemical process for low-GHG production of ammonia

Green Car Congress

A team at George Washington University led by Stuart Licht has developed a relatively efficient electrochemical process for the production of ammonia from water and nitrogen, without the need for an independent hydrogenation step (and thus the associated carbon-intensive steam reforming of methane as the hydrogen source). —Licht et al.

Ni-Li 218
article thumbnail

Researchers develop non-flammable fluorinated electrolyte for Li-metal anodes with aggressive cathode chemistries; toward a 500 Wh/kg goal

Green Car Congress

Researchers at the University of Maryland (UMD), the US Army Research Laboratory (ARL), and Argonne National Laboratory (ANL) have developed a non-flammable fluorinated electrolyte that supports the most aggressive and high-voltage cathodes in a Li-metal battery. Li metal offers one of the highest specific capacities (3,860 mAh g ?1

Ni-Li 186
article thumbnail

Researchers boost performance of lithium-rich cathode material 30-40% by creating oxygen vacancies

Green Car Congress

An international team of researchers has demonstrated a new way to increase the robustness and energy storage capability of a particular class of “lithium-rich” cathode materials by using a carbon dioxide-based gas mixture to create oxygen vacancies at the material’s surface. —Qiu et al. Click to enlarge.

San Diego 170