Remove Carbon Remove Conversion Remove Industry Remove Resource
article thumbnail

Three-part catalyst study advances conversion of CO2 to ethanol

Green Car Congress

An international collaboration of scientists has taken a significant step toward the realization of a nearly “green” zero-net-carbon technology that can efficiently convert CO 2 and hydrogen into ethanol. The study will drive further research into how to develop a practical industrial catalyst for selectively converting CO 2 into ethanol.

article thumbnail

Stanford engineers develop catalyst strategy to improve turnover frequencies for CO2 conversion to hydrocarbons by orders of magnitude

Green Car Congress

Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. To capture as much carbon as possible, you want the longest chain hydrocarbons. Chains with eight to 12 carbon atoms would be the ideal. —Zhou et al.

article thumbnail

New process uses localized surface plasmons for room-temperature conversion of CO2 to CO

Green Car Congress

Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have demonstrated a room-temperature method that could significantly reduce carbon dioxide levels in fossil-fuel power plant exhaust, one of the main sources of carbon emissions in the atmosphere.

article thumbnail

Molten carbonate electrolysis can produce a range of carbon nanomaterials, including graphene, from CO2 at high yield

Green Car Congress

Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis. Source: Prof.

Carbon 376
article thumbnail

Researchers develop titanium and copper heterostructured photocatalyst for conversion of CO2 into CH4

Green Car Congress

Scientists at Daegu Gyeongbuk Institute of Science and Technology, Korea, have developed a novel heterostructured photocatalyst using titanium and copper, two abundant and relatively inexpensive metals, for the conversion of CO 2 into CH 4. Apart from its CO 2 conversion capabilities, the proposed photocatalyst has other benefits.

CO2 324
article thumbnail

SARI researchers propose novel method to enhance electrocatalytic conversion of CO2

Green Car Congress

The electrochemical conversion of CO 2 into carbon-based fuels and valuable feedstocks by renewable electricity is an attractive strategy for carbon neutrality. Therefore, CO 2 electroreduction to CO is one of the most promising routes to obtain cost-competitive products, the researchers said. and Sun, Y.

CO2 195
article thumbnail

Aqua Metals and 6K Energy partner to develop low-carbon CAM precursors for Li-ion batteries

Green Car Congress

The companies have initiated the partnership with a non-recurring engineering (NRE) agreement to develop low-carbon technology for the conversion of critical metals—first virgin and later recycled material—into battery-grade cathode active material (CAM) precursors, which are essential to 6K Energy’s advanced cathode manufacturing.

Li-ion 199