This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
reports that it has achieved full conversion ( 99% + ) of king grass cellulosic material to water soluble sugars on a repeatable basis. This conversion occurs with a reaction time of less than one minute. Cellulose to Sugar) reactor system that has been designed to allow further process optimization as compared to earlier systems.
The technology converts a low-value by-product into high-value, low-carbon fuel while also enabling the production of significantly more corn oil. Fiberex is specifically aimed at breaking down tough fibers in the corn, providing producers with greater operational flexibility.
Volkswagen has begun conversion of its Emden, Germany plant to support the production of Evs; the first electric cars are to roll off the production line there from 2022. With the conversion of our plant at Emden into a production location for electric vehicles, Volkswagen is forcing the pace of system change. 4 and the ID.3
A multi-institutional research team led by materials scientists from Pacific Northwest National Laboratory (PNNL) has designed a highly active and durable catalyst that doesn’t rely on costly platinum group metals (PGM) to spur the necessary chemical reaction. The new catalyst contains cobalt interspersed with nitrogen and carbon.
CMAL) to partner in designing a hydrogen fuel-cell sea-going passenger and car ferry—a first for Europe. Partner Kongsberg Maritime designed the comprehensive testing regime to investigate whether the system would be suitable for handling and responding to demands that normally occur during normal sea-going operations.
Moreover, it features a higher wave energy conversion efficiency and power output as compared to previous TENG designs and is able to float on the water’s surface, which minimizes both the environmental impact and simplifies operation and these features are essential for the practical use of TENGs on ocean wave energy harvesting application.
Strategic Biofuels announced that its Carbon Capture and Sequestration (CCS) Test Well Program was successfully completed at the company’s Louisiana Green Fuels Project (LGF) in Caldwell Parish, Louisiana. Deep carbon negativity greatly increases the potential carbon credit revenues from our fuel and vastly improves the project’s returns.
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million OCOchem transforms recycled CO 2 , water and zero-carbon electricity to produce formic acid, a globally traded commodity chemical and emerging electro-fuel.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
Projects selected under this funding opportunity announcement (FOA) will perform conceptual design studies followed by field validations of cost-effective processes for ocean-based carbon capture and for direct air capture of CO 2 coupled with carbon-free hydrogen and captured CO 2 to create carbon-neutral methanol.
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Air Nostrum.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
The new PNNL carbon capture and conversion system brings the cost to capture CO 2 down to about $39 per metric ton. Just as one can choose between single-use and recyclable materials, so too can one recycle carbon. gallon ($1,460/metric ton) when using CO 2 captured from a 650 MW natural gas combined cycle plant.
The US Department of Energy (DOE) will award up to $24 million for research into technology that captures carbon emissions directly from the air, replicating the way plants and trees absorb CO 2. ( DOE supports the search for carbon removal solutions at both the basic and applied science levels. DE-FOA-0002481 ).
The new nickel-based glass-ceramic composite interconnect allowed for the design of a more complex reactor pathway. The ceramic membrane reactor also separates carbon dioxide more efficiently, enabling the greenhouse gas to be easily transported and sequestered. The process also has a low carbon footprint.
Researchers at the US Naval Research Laboratory (NRL), Materials Science and Technology Division have demonstrated novel NRL technologies developed for the recovery of CO 2 and hydrogen from seawater and their subsequent conversion to liquid fuels. E-CEM Carbon Capture Skid. Photo: US Naval Research Laboratory) Click to enlarge.
Solar-Concentrating Photovoltaic Mirrors Arizona State University will develop a curved mirror made of solar cells to collect both direct and diffuse sunlight for conversion to electricity and heat. This design can provide a low-cost way to utilize the diffuse portion of the solar spectrum. Earlier post.). Cogenra Solar, Inc.
The assistant professor and William Marsh Rice Trustee Chair of Chemical and Biomolecular Engineering has proposed the development of a modular electrochemical system that will provide “a sustainable, negative-carbon, low-waste and point-source manufacturing path preferable to traditional large-scale chemical process plants.”.
Worley is a leading supplier of engineering, procurement and construction services and will support designing a facility concept that can be efficiently replicated to establish 500 eMethanol plants by 2050. Worley brings extensive experience with similar projects, including hydrogen, carbon capture and eFuel.
The companies are joining efforts to implement the carbon-negative UBQ thermoplastic ( earlier post ) into auto parts manufactured by Motherson Group for the automotive industry. UBQ GHG Neutralizers, conversely, offset on average 15 times their weight of CO 2 -e. Polymers typically emit 1.9 Every ton of UBQ produced prevents 11.7
The UK government is awarding £54 million to 15 projects to develop technologies that remove carbon emissions from the atmosphere. The carbon dioxide can then be permanently stored or used in various products or applications. The biochar is rich in carbon and can be used as a fertilizer. Cambridge Carbon Capture Ltd.,
Carbon Recycling International (CRI) and Johnson Matthey (JM) have agreed on a long-term exclusive catalyst supply agreement for the use of JM’s KATALCO methanol catalysts in CRI’s Emissions-To-Liquids (ETL) CO 2 -to-methanol plants. Hydrogen can also be processed from by-product hydrogen available in some industrial waste streams.
Researchers at the Weizmann Institute of Science in Rehovot, Israel have created a strain of the bacterium Escherichia coli that grows by consuming carbon dioxide instead of sugars or other organic molecules. The findings point to means of developing, in the future, carbon-neutral fuels. Ron Milo of the Weizmann Institute.
Scientists at Stanford University have developed electrochemical cells that convert carbon monoxide (CO) derived from CO 2 into commercially viable compounds more effectively and efficiently than existing technologies. 1 ), low cell voltages, and high single-pass CO conversion, leading directly to concentrated product streams.
GTI has released a site-specific engineering design titled “ Low-Carbon Renewable Natural Gas (RNG) from Wood Wastes ”. A biomass power plant in Stockton, California, was the host site for the engineering design effort. A biomass power plant in Stockton, California, was the host site for the engineering design effort.
Cool Planet has devised a biomass-to-liquids thermochemical conversion process that simultaneously produces liquid fuels and sequesterable biochar useful as a soil amendment. One of the catalytic conversion processes creates the high-octane gasoline blendstock. Earlier post.).
The US Department of Energy’s (DOE) Office of Fossil Energy has selected seven projects to receive approximately $44 million in federal funding for cost-shared research and development through the funding opportunity announcement, Design and Testing of Advanced Carbon Capture Technologies. Description. TDA Research, Inc. Description.
Jian Liu and Prof.Zhongshuai Wu from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have developed Fe 1-x S-decorated mesoporous carbon spheres as a cathode material for lithium-sulfur batteries. level design to improve the performance of LSBs in terms of long? Researchers led by Prof.
The centers selected for the second round of funding will help lay the scientific groundwork for fundamental advances in solar energy, electrical energy storage, carbon capture and sequestration, materials and chemistry by design, biosciences, and extreme environments. Light-Material Interactions in Energy Conversion (LMI).
Researchers at the Swiss Federal Institute of Technology (ETH) Zurich, Switzerland, have developed a carbon-supported platinum nanoparticle catalyst that can achieve complete hydrocracking of polypropylene into liquid hydrocarbons (C 5 –C 45 ). The platinum phase controls the activity, while the carbon carrier regulates selectivity.
At an event held at its steel plant in Ghent, Belgium, ArcelorMittal inaugurated its flagship carbon capture and utilization (CCU) project. It will reduce annual carbon emissions from the Ghent plant by 125,000 tonnes. This project will reduce annual carbon emissions in Ghent by 112,500 tonnes. Earlier post.)
Researchers from Northwestern University and Princeton University have explored the impact on US air quality from an aggressive conversion of internal combustion vehicles to battery-powered electric vehicles (EVs). No matter how the power is generated, the more combustion cars you take off the road, the better the ozone quality.
(PSI) and SBI Bioenergy (SBI) have entered into an alliance agreement to license differentiated, integrated, energy-efficient, and sustainable technologies for biomass to green hydrogen and low carbon biofuels production.
The US Department of Energy announced $33 million in funding for 17 projects as part of the Advanced Research Projects Agency-Energy’s (ARPA-E) Aviation-class Synergistically Cooled Electric-motors with iNtegrated Drives (ASCEND) and Range Extenders for Electric Aviation with Low Carbon and High Efficiency (REEACH) programs.
student of the Graduate School of Science, have shown that the catalyst formate dehydrogenase reduces carbon dioxide directly to formic acid. The development of an effective catalyst is an important step in creating an artificial photosynthesis system that uses sunlight to convert carbon dioxide into organic molecules.
It marks a major step towards proving that hydrogen could be a zero carbon aviation fuel of the future and is a key proof point in the decarbonization strategies of both Rolls-Royce and easyJet. We are pushing the boundaries to discover the zero carbon possibilities of hydrogen, which could help reshape the future of flight.
Using an inexpensive polymer called melamine, researchers from UC Berkeley, Texas A&M and Stanford have created a cheap, easy and energy-efficient way to capture carbon dioxide from smokestacks. We distinguished ammonium carbamate pairs and a mix of ammonium carbamate and carbamic acid during carbon dioxide chemisorption.
The companies have initiated the partnership with a non-recurring engineering (NRE) agreement to develop low-carbon technology for the conversion of critical metals—first virgin and later recycled material—into battery-grade cathode active material (CAM) precursors, which are essential to 6K Energy’s advanced cathode manufacturing.
The other projects include efforts to bring a microreactor design closer to deployment, tackle nuclear regulatory hurdles, improve operations of existing reactors, and facilitate new advanced reactor developments. The US Department of Energy (DOE) awarded $22.1 This funding opportunity is administered by DOE’s Office of Nuclear Energy (NE).
Supported by the German Federal Ministry of Economics and Technology (BMWi), and due to run for three years from December 2020, project partners include the University of Munich, Neptun Ship Design, WTZ and Woodward L’Orange. Alexander Knafl, Head of R&D, Four-Stroke Engineering, MAN Energy Solutions.
After intensive tests on test benches and pilot installations at customers in 2022, Rolls-Royce will continuously market new mtu Series 500 and Series 4000 gas engines beginning in 2023 for use with up to 100 percent hydrogen, and on a design to order basis conversion kits to allow already installed gas engines in the field to run on 100% hydrogen.
The minimum 10-year deal will reduce lifecycle emissions by up to 340,647 metric tons of carbon dioxide per year, beginning with the first expected SAF deliveries in 2026. These changes eliminate the need for carbon sequestration and reduce the system’s feed-stock handling costs and complexity.
The US Department of Energy (DOE) announced the award of approximately $72 million in federal funding to support the development and advancement of carbon capture technologies under two funding opportunity announcements (FOAs). Enabling Production of Low Carbon Emissions Steel Through CO 2 Capture from Blast Furnace Gases.
Ford Pro, the company’s commercial vehicle (CV) and services division, will use the pilot to expand its conversion expertise, supported by on-site engineers and E-Transit specialists from the company’s Dagenham site and Dunton Technical Centre, in Essex, UK.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content