This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.
Yavuz of King Abdullah University of Science and Technology (KAUST), Prof. Bo Liu from University of Science and Technology of China (USTC), and Prof. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. Xiang et al. Nguyen, Cafer T. 2023.101383
Professor Yutaka Amao of the Osaka City University Artificial Photosynthesis Research Center and Ryohei Sato, a 1 st year Ph.D. student of the Graduate School of Science, have shown that the catalyst formate dehydrogenase reduces carbon dioxide directly to formic acid. However, until now the details of how this happened were unclear.
Researchers at George Washington University led by Dr. Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). The physical properties, such as the.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. However, the electrocatalytic formation of products with two or more carbon atoms (C 2+ ) is very challenging. These could then be burned as needed. Credit: Angewandte Chemie. and Xiong, Y.
Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).
ADM and the University of Illinois announced the successful completion of the Illinois Basin - Decatur Project (IBDP), a carbon capture and storage (CCS) project designed to evaluate and test the technology at commercial scale. million metric tons of carbon dioxide. km pipeline, and injected into the Mt. Simon Sandstone 2.14
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. 2020) “Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst.” H 2 O) on catalytically active sites on ?-Fe Makgae, O.A.
University of Delaware engineers have demonstrated an effective way to capture 99% of carbon dioxide from the ambient air feed to an hydroxide exchange membrane fuel cell (HEMFC) air using a novel electrochemical system powered by hydrogen. Source: University of Delaware.
A joint research team from City University of Hong Kong (CityU) and collaborators have developed a stable artificial photocatalytic system that is more efficient than natural photosynthesis. The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light.
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel.
A study by University of Chicago economist Esteban Rossi-Hansberg, the Glen A. Lloyd Distinguished Service Professor in Economics, and José-Luis Cruz of Princeton University assesses the local social cost of carbon (LSCC) and how that cost aligns with the carbon reduction pledges countries made under the Paris Agreement.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
Researchers in China led by a team from Fudan University have demonstrated the electrochemical reduction of CO 2 toward C 2+ alcohols with a faradaic efficiency of ~70% using copper (Cu) catalysts with stepped sites.
Researchers at Illinois Institute of Technology (IIT), with colleagues at the University of Pennsylvania and the University of Illinois at Chicago have developed an electrolyzer capable of converting carbon dioxide into propane in a manner that is both scalable and economically viable. —Esmaeilirad et al.
The SOLETAIR project ( earlier post ) has produced its first 200 liters of synthetic fuel from solar energy and the air’s carbon dioxide via Fischer-Tropsch synthesis. The mobile chemical pilot plant produces gasoline, diesel, and kerosene from regenerative hydrogen and carbon dioxide.
Researchers at the University of Michigan, McGill University and McMaster University have developed a binary copper?iron The researchers think that it could be recycling smokestack carbon dioxide into clean-burning fuel within 5-10 years. Turning carbon dioxide into methane is a very difficult process.
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have demonstrated a room-temperature method that could significantly reduce carbon dioxide levels in fossil-fuel power plant exhaust, one of the main sources of carbon emissions in the atmosphere.
Researchers this month will begin testing a high-voltage circuit breaker that can quench an arc and clear a fault with supercritical carbon dioxide fluid. The greenhouse warming potential of SF 6 is nearly 25,000 times as high as that of carbon dioxide, he notes. In Georgia Techs design, supercritical carbon dioxide quenches the arc.
Their use as catalysts in the synthesis of high value-added chemical products such as fuels, alcohols, carbonates and polyurethanes will make it possible to reduce the amount of CO 2 currently generated. million, with a total of nine partners (companies, technology centers and universities). The project had a budget of €4.2
Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. To capture as much carbon as possible, you want the longest chain hydrocarbons. Chains with eight to 12 carbon atoms would be the ideal. —Zhou et al.
EIA expects that level of decrease in hydropower generation would lead to an 8% increase in California’s electricity generation from natural gas, a 6% increase in energy-related carbon dioxide (CO 2 ) emissions in the state, and an average 5% increase in wholesale electricity prices throughout the West given the current system configuration.
Researchers at the University of Surrey (UK) are developing a process to capture carbon dioxide directly from the air and then use dynamic catalysis to create methanol—a valuable chemical that, made this way, could be carbon-negative. —Dr Melis Duyar, project lead from the University of Surrey.
This project is part of CEMEX’s Future in Action program to reduce its carbon footprint and contribute to a circular economy and an integral component of CEMEX’s master plan to develop a carbon neutral operation at its Rüdersdorf cement plant by 2030. ENERTRAG is a renewable-energy company based in Brandenburg, Germany.
20 nm) are selective toward the formation of carbon nanotubes (CNTs), while small Ni particle sizes (i.e., Solid carbon that accumulates on the catalyst is washed and separated for commercial use, while the metallic precursors are re-synthesized and recycled back into the reactor. Further, large Ni particle sizes (i.e., >20
Researchers at George Washington University led by Prof. Stuart Licht ( earlier post ) report a process for the high-yield, low-energy synthesis of carbon nano-onions (CNOs) by electrolysis of CO 2 in molten carbonate. The source of CO 2 to produce CNOs can be industrial flue gas, or direct air carbon capture.
The successful bench-scale test of a novel carbon dioxide capturing sorbent promises to further advance the process as a possible technological option for reducing CO 2 emissions from coal-fired power plants. ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo.
Overview of Carbon Sciences’ process. Carbon Sciences, Inc., a technology developer focusing on the conversion of carbon dioxide and methane to fuels, plans to produce samples of diesel fuel in an end-to-end process demonstration. Carbon Sciences says it has solved this problem. Click to enlarge. Earlier post.)
Schematic overview of the primary black-carbon emission sources and the processes that control. the distribution of black carbon in the atmosphere and determine its role in the climate system. Accounting for all of the ways black carbon can affect climate, it is believed to have a warming effect of about 1.1 Source: Bond et al.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. Colorado State University. Synergistic Heat Pumped Thermal Storage and Flexible Carbon Capture System - $1,000,000. University of Pittsburgh.
A team of Brown University researchers has fine-tuned a copper catalyst to produce complex hydrocarbons—C 2+ products—from CO 2 with high efficiency. By converting CO 2 into products of higher value, a closed-loop carbon economy begins to emerge. An open-access paper on the work is published in Nature Communications.
A preliminary analysis of global data has found that carbon dioxide emissions from fossil fuel sources reached a maximum daily decline of 17% in April as a result of drastic decline in energy demand that have occurred during the COVID-19 pandemic. —CSIRO researcher and Global Carbon Project Director Dr Pep Canadell.
The US Department of Energy’s (DOE) Office of Fossil Energy has selected seven projects to receive approximately $44 million in federal funding for cost-shared research and development through the funding opportunity announcement, Design and Testing of Advanced Carbon Capture Technologies. University of North Dakota. Description.
Researchers from Newcastle University in the UK have engineered Escherichia coli bacteria to capture carbon dioxide using hydrogen gas to convert it into formic acid. coli, hydrogenating carbon dioxide into an organic acid,” said Dr. Sargent. “We The key is for a microbe to use formate as its sole carbon source.
Researchers from The University of Texas at Arlington are developing a new process for photoelectrosynthesis of methanol—the conversion of carbon dioxide to methanol using sunlight and hybrid CuO–Cu 2 O semiconductor nanorod arrays. An attractive option would be to convert greenhouse gases to liquid fuel.
System boundaries (red line) schematic for liquid fuel carbon balance. For biofuels, because biogenic carbon is automatically credited within a product lifecycle, the boundary effectively excludes vehicle end-use CO 2 emissions. DeCicco 2013. Click to enlarge.
A new report from MIT’s Joint Program on the Science and Policy of Global Change suggests that a tax on carbon emissions could help raise the money needed to reduce the US deficit, while improving the economy, lowering other taxes and reducing emissions. In the report— Carbon Tax Revenue and the Budget Deficit: A Win-Win-Win Solution?
Alternatively, syngas can be added to sugar fermentation to provide the necessary reducing power and carbon. … They can take carbon dioxide and hydrogen gas and turn them into chemicals such as acetone, butanol or ethanol. We get both the increase in yield and consumption of all the carbon. Jones et al. Click to enlarge.
Researchers from University of Girona (Spain) successfully used electrically efficient microbial electrosynthesis cells (MES) to convert CO 2 to butyric acid. Chain elongation resulted in the selective (78% on a carbon basis) production of butyric acid, a valuable chemical used in pharmaceuticals, farming, perfumes, and the chemical industry.
Coiled platinum before (left), and after (right), carbon capture @ 750 °C in molten carbonate. Carbon dioxide fed into the electrolysis chamber is converted to solid carbon in a single step. split carbon dioxide, fed into a molten lithium carbonate electrolyte, via electrolysis.it Credit: ACS, Licht et al.
University of Colorado Boulder researchers have developed nanobio-hybrid organisms capable of using airborne carbon dioxide and nitrogen to produce a variety of plastics and fuels, a promising first step toward low-cost carbon sequestration and eco-friendly manufacturing for chemicals. Yuchen Ding, John R. 9b02549.
One-pot electrolytic process produces H 2 and solid carbon from water and CO 2. In this study, they focused on the electrolysis component for STEP fuel, producing hydrogen and graphitic carbon from water and carbon dioxide. The one-pot co-synthesis of hydrogen and carbon and C was carried using a new Li 1.6
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content