Remove Carbon Remove CO2 Remove Universal
article thumbnail

Researchers produce green syngas using CO2, water and sunlight

Green Car Congress

Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.

Water 504
article thumbnail

Molten carbonate electrolysis can produce a range of carbon nanomaterials, including graphene, from CO2 at high yield

Green Car Congress

Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.

Carbon 376
article thumbnail

Researchers create salts for cheap and efficient CO2 capture; mimicking methane hydrate

Green Car Congress

Yavuz of King Abdullah University of Science and Technology (KAUST), Prof. Bo Liu from University of Science and Technology of China (USTC), and Prof. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure. Xiang et al. Nguyen, Cafer T. 2023.101383

Cheap 473
article thumbnail

Osaka researchers find formate dehydrogenase reduces CO2 directly to formic acid

Green Car Congress

Professor Yutaka Amao of the Osaka City University Artificial Photosynthesis Research Center and Ryohei Sato, a 1 st year Ph.D. student of the Graduate School of Science, have shown that the catalyst formate dehydrogenase reduces carbon dioxide directly to formic acid. However, until now the details of how this happened were unclear.

CO2 435
article thumbnail

GWU team demonstrates highly scalable, low-cost process for making carbon nanotube wools directly from CO2

Green Car Congress

Researchers at George Washington University led by Dr. Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). The physical properties, such as the.

Low Cost 300
article thumbnail

New electrocatalyst converts CO2 into ethanol, acetone, and n-butanol with high efficiency

Green Car Congress

The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. However, the electrocatalytic formation of products with two or more carbon atoms (C 2+ ) is very challenging. These could then be burned as needed. Credit: Angewandte Chemie. and Xiong, Y.

Convert 435
article thumbnail

ExxonMobil, UC Berkeley, Berkeley Lab develop new MOF for carbon capture and steam regeneration

Green Car Congress

Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).

Carbon 414