This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.
EIA expects that level of decrease in hydropower generation would lead to an 8% increase in California’s electricity generation from natural gas, a 6% increase in energy-related carbon dioxide (CO 2 ) emissions in the state, and an average 5% increase in wholesale electricity prices throughout the West given the current system configuration.
Qiang Xu of Southern University of Science and Technology (SUSTech) have developed a promising method for carbon capture and storage using a single-crystalline guanidinium sulfate-based clathrate salt. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure.
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). The most compact form of captured carbon is through its transformation to solid carbon.
Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).
The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). The final product is usually a crystallized material. Fe 5 C 2 respectively.
GTI has released a site-specific engineering design titled “ Low-Carbon Renewable Natural Gas (RNG) from Wood Wastes ”. The RNG product with very low carbon intensity could be used for carbon emission reductions in the transportation, industrial, commercial, and residential energy sectors. Source: GTI.
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have demonstrated a room-temperature method that could significantly reduce carbon dioxide levels in fossil-fuel power plant exhaust, one of the main sources of carbon emissions in the atmosphere.
Researchers at the Department of Energy’s Pacific Northwest National Laboratory have developed a new method to convert captured CO 2 into methane, the primary component of natural gas. Conventionally, plant operators can capture CO 2 by using special solvents that douse flue gas before it’s emitted from plant chimneys. Heldebrant, D.,
LanzaTech UK and direct air capture technology company Carbon Engineering have partnered on a project to create sustainable aviation fuel (SAF) using atmospheric carbon dioxide (CO 2 ).
BMW i Ventures has invested in Prometheus Fuels ( earlier post ), a company removing CO 2 from the air and turning it into zero-net carbon gasoline that it will sell at gas stations, at a price that competes with fossil fuels, starting as early as this year. —Greg Smithies, Partner, BMW i Ventures.
Audi’s e-gas plant. Audi has opened its e-gas plant in Werlte, making it the first automobile manufacturer to develop a chain of sustainable energy carriers. The Audi e-gas plant, which can convert 6MW of input power, utilizes renewable electricity for electrolysis to produce oxygen and hydrogen. Components of the e-gas plant.
Audi will introduce the compact A3 Sportback g-tron—which can be powered by the CO 2 -neutral Audi e-gas, synthetic methane generated from eco-electricity in the Audi e-gas project ( earlier post )—at the end of the year. The e-gas fuel will be produced in the power-to-gas plant in Werlte, Germany.
natural gas vehicle. natural gas vehicle, previewed in a concept form in 2011 ( earlier post ) and revealed in its production version at the Geneva auto show in March this year, in Europe. The natural gas version produces its 50 kW output at 6,200 rpm and reaches its maximum torque of 90 N·m (66 lb-ft) at 3,000 rpm.
With the support of a grant from the Department of Energy, Miao Yu, the Priti and Mukesh Chatter ’82 Career Development Chair of Chemical and Biological Engineering at Rensselaer Polytechnic Institute, will develop a novel porous material capable of capturing even very small concentrations of CO 2 in the air and collecting the gas for further use.
This calculation includes all CO 2 emissions grouped under Scope 1 and 2 categories as set out by the Greenhouse Gas Protocol as well those associated with transporting material between production and refining sites. For the purposes of this analysis, emissions are classed as any anthropogenic sources of CO 2.
Utilizing Western Canadian natural gas, combined with carbon capture and sequestration, the project will produce 3 million tonnes annually of net-zero, Blue Methanol. Nauticol’s Grande Prairie facility is located in the heart of the prolific natural gas and liquid hydrocarbon formation called the Montney.
Source: US EIA, US Energy-Related Carbon Dioxide Emissions , 2017. The power sector has become less carbon-intensive as natural gas-fired generation displaced coal-fired and petroleum-fired generation and as the noncarbon sources of electricity generation—especially renewables such as wind and solar—have grown.
Stuart Licht ( earlier post ) report a process for the high-yield, low-energy synthesis of carbon nano-onions (CNOs) by electrolysis of CO 2 in molten carbonate. High yield electrolytic synthesis of carbon nano-onions from CO 2 , either directly from the air or from smoke stack CO 2 , in molten carbonate.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. The team will use gas or liquid buffering tanks and tight thermal integration between the air separation unit and the oxy-combustion turbine. 8 Rivers Capital.
The successful bench-scale test of a novel carbon dioxide capturing sorbent promises to further advance the process as a possible technological option for reducing CO 2 emissions from coal-fired power plants. SRI’s carbon capture process, which includes both the sorbent and unique process design, looks promising for future applications.
The SOLETAIR project ( earlier post ) has produced its first 200 liters of synthetic fuel from solar energy and the air’s carbon dioxide via Fischer-Tropsch synthesis. The mobile chemical pilot plant produces gasoline, diesel, and kerosene from regenerative hydrogen and carbon dioxide.
Increased economic activity and a changing fuel mix in the electric power sector in 2021 will lead to a significant increase in energy-related carbon dioxide emissions this year, according to the US Energy Information Administration’s (EIA) August Short-Term Energy Outlook (STEO). billion metric tons this year. Gasoline prices averaged $3.14
The sunfire plant, which operates according to the “power-to-liquid” (PtL) principle, requires carbon dioxide, water and electricity as raw materials. The carbon dioxide is extracted directly from the ambient air using direct air capture (DAC)—a technology developed by Swiss partner Climeworks. The process is up to 70% efficient.
Audi A3 TCNG for e-gas project. Starting in 2013, Audi will begin series production of TCNG models whose engines—derived from TFSI units—will be powered by e-gas: synthetic methane produced via the methanation of hydrogen produced by electrolysis using renewable electricity. Click to enlarge.
Vertimass and European Energy have completed a Letter of Intent (LOI) to integrate technologies for capturing carbon dioxide and converting it into hydrocarbon products around the world. —Vertimass CEO Charles Wyman. The simplicity of this single reaction stage results in low capital and operating costs.
Researchers from Newcastle University in the UK have engineered Escherichia coli bacteria to capture carbon dioxide using hydrogen gas to convert it into formic acid. The bacteria grew under gas pressure and generated formic acid from the CO 2 , said Dr. Sargent. The key is for a microbe to use formate as its sole carbon source.
The system uses heated supercritical carbon dioxide instead of steam to generate electricity and is based on a closed-loop Brayton cycle. Supercritical carbon dioxide is a non-toxic, stable material that is under so much pressure it acts like both a liquid and a gas. Graphic courtesy Sandia National Laboratories).
Researchers in South Korea are suggesting two new carbon-dioxide-utilized Gas-to-Liquids processes (CUGP) to increase the overall efficiency of conventional Fischer-Tropsch GTL. In a paper in the ACS journal Environmental Science & Technology , they report that the two CUGP options increase carbon efficiency by 21.1?41.3%
The plant will produce carbon-neutral fuel—enough to decarbonize more than 400,000 vehicles annually. eFuels are produced by combining green hydrogen made from renewable power and recycled carbon dioxide. HIF’s facility in Texas will help remove 2 million tonnes of CO2 from the air every year. Earlier post.)
Partners of the P2X Kopernikus project on the premises of Karlsruhe Institute of Technology (KIT) in Germany have demonstrated the production of fuel from air-captured CO2 using—for the first time—a container-based test facility integrating all four chemical process steps needed to implement a continuous process.
ReactWell , LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s Oak Ridge National Laboratory to improve energy conversion methods for cleaner, more efficient oil and gas, chemical and bioenergy production. —ORNL’s Adam Rondinone, co-inventor of the carbon dioxide-to-ethanol catalyst.
The plant will liquefy gas from the natural gas grid to produce carbon-neutral LNG. Wärtsilä’s experience and state-of-the-art technologies developed for the process design, fabrication, and delivery of gas liquefaction plants and mature gas treatment solutions prior to liquefaction, were key factors to secure the contract.
Stuart Licht reports that the addition of carbon nanotubes (CNTs) produced from CO 2 by low-energy C2CNT (CO 2 to CNT) molten electrolysis ( earlier post ) to materials such as concrete or steel not only forms composites with significantly better properties, but amplifies the reduction of CO 2. A) Carbon mitigation with CNT-cement. (B)
System boundaries (red line) schematic for liquid fuel carbon balance. For biofuels, because biogenic carbon is automatically credited within a product lifecycle, the boundary effectively excludes vehicle end-use CO 2 emissions. Broadly speaking, two approaches have been used to examine the greenhouse gas (GHG) impacts of biofuels.
Alternatively, syngas can be added to sugar fermentation to provide the necessary reducing power and carbon. … They can take carbon dioxide and hydrogen gas and turn them into chemicals such as acetone, butanol or ethanol. We get both the increase in yield and consumption of all the carbon. Jones et al. Click to enlarge.
Singapore will implement a new Carbon Emissions-Based Vehicle Scheme (CEV) on 1 January 2012, providing rebates to qualified new cars, taxis, and imported used cars with low carbon emissions, and imposing an equivalent surcharge on higher emitting vehicles.
The US and China jointly announced greenhouse gas (GHG) reduction targets. US President Barack Obama said the US will cut net greenhouse gas emissions in the US by 26-28% below 2005 levels by 2025. Together, the US and China account for more than one third of global greenhouse gas emissions.
The remainder is compensated by bio-gas certificates. Audi Hungaria is thus the second of five Audi sites (after Audi Brussels) to achieve a neutral carbon balance, according to the company. We have a clear aim: that all Audi sites will have carbon-neutral operation by 2025.
BASF researchers have developed a process to produce methanol without any greenhouse gas emissions. If it can be successfully implemented at an industrial scale, the entire production process – from syngas production to pure methanol – will no longer release any carbon dioxide emissions.
The US Department of Energy’s (DOE) Office of Fossil Energy has selected seven projects to receive approximately $44 million in federal funding for cost-shared research and development through the funding opportunity announcement, Design and Testing of Advanced Carbon Capture Technologies. Description. Membrane Technology and Research, Inc.
The findings could spur progress on developing a variety of materials and designs for electrochemical carbon dioxide conversion systems. Depending on the material choice for the electrocatalysis, a certain variety of products is expected from the carbon dioxide reduction reaction (CO 2 RR). —Soto et al.
One-pot electrolytic process produces H 2 and solid carbon from water and CO 2. In this study, they focused on the electrolysis component for STEP fuel, producing hydrogen and graphitic carbon from water and carbon dioxide. Click to enlarge. A paper on the new work is published in the journal Advanced Energy Materials.
Carbon dioxide emissions from S energy consumption will remain near current levels through 2050, according to projections in EIA’s Annual Energy Outlook 2019. USenergy-related carbon dioxide emissions and fossil fuel energy consumption. US energy-related carbon dioxide emissions in AEO2019 Reference Case.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content