This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The US Department of Energy (DOE) Advanced Research Projects Agency - Energy (ARPA-E) will award up to $45 million in funding to support a new program aimed at facilitating the development of the marine carbon dioxide removal (mCDR) industry through scalable Measurement, Reporting and Validation (MRV) technologies.
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel. Leung et al.
Researchers from Huazhong University of Science and Technology in China and George Washington University in the US report in a new paper in the ACS journal Accounts of Chemical Research that a range of important carbon nanomaterials can be produced at high yield by molten carbonate electrolysis.
Nauticol Energy and Enhance Energy have entered into an agreement to work collaboratively for the capture and sequestration of up to one million tonnes of CO 2 each year from Nauticol’s planned $2-billion Blue Methanol facility to be built near Grande Prairie, Alberta. —Mark Tonner, CEO and co-founder of Nauticol.
Tests conducted by Titirici Group , a multidisciplinary research team based at Imperial College London, have found that a novel carbon nanotube electrode material derived from CO 2 —produced by Estonian nanotech company UP Catalyst ( earlier post )—enhances the cyclability of sodium-ion batteries. From every 3.7
Electrofuels provider Infinium and comprehensive carbon management company Navigator CO2 entered into a Memorandum of Understanding and long-term relationship for Navigator to deliver 600,000 tons per annum (TPA) of biogenic carbon dioxide from its Heartland Greenway system to a future Infinium facility for the production of electrofuels (eFuels).
Qiang Xu of Southern University of Science and Technology (SUSTech) have developed a promising method for carbon capture and storage using a single-crystalline guanidinium sulfate-based clathrate salt. Methane hydrate is studied for its ability to capture and trap gas molecules such as carbon dioxide under high pressure.
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). A paper on the work is published in the journal Materials Today Energy.
Scientists from ExxonMobil, University of California, Berkeley and Lawrence Berkeley National Laboratory have developed a new material that could capture more than 90% of CO 2 emitted from industrial sources using low-temperature steam, requiring less energy for the overall carbon capture process. UC Berkeley graphic by Eugene Kim).
Vertimass and European Energy have completed a Letter of Intent (LOI) to integrate technologies for capturing carbon dioxide and converting it into hydrocarbon products around the world. —Søren Knudsen Kær , Head of Technology, Power-to-X of European Energy. —Vertimass CEO Charles Wyman.
Stuart Licht ( earlier post ) report a process for the high-yield, low-energy synthesis of carbon nano-onions (CNOs) by electrolysis of CO 2 in molten carbonate. High yield electrolytic synthesis of carbon nano-onions from CO 2 , either directly from the air or from smoke stack CO 2 , in molten carbonate.
student of the Graduate School of Science, have shown that the catalyst formate dehydrogenase reduces carbon dioxide directly to formic acid. The development of an effective catalyst is an important step in creating an artificial photosynthesis system that uses sunlight to convert carbon dioxide into organic molecules.
Increased economic activity and a changing fuel mix in the electric power sector in 2021 will lead to a significant increase in energy-related carbon dioxide emissions this year, according to the US Energy Information Administration’s (EIA) August Short-Term Energy Outlook (STEO). billion metric tons this year.
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have demonstrated a room-temperature method that could significantly reduce carbon dioxide levels in fossil-fuel power plant exhaust, one of the main sources of carbon emissions in the atmosphere. Credit: NIST.
Electrochemical reduction of carbon dioxide (CO 2 ) is a promising approach to solve both renewable energy storage and carbon-neutral energy cycle. C 2+ alcohols are desirable due to their high energy densities and large global market capacities.
University of Delaware engineers have demonstrated an effective way to capture 99% of carbon dioxide from the ambient air feed to an hydroxide exchange membrane fuel cell (HEMFC) air using a novel electrochemical system powered by hydrogen. The research team, led by UD Professor Yushan Yan, reported their method in Nature Energy.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. Excess energy produced by photovoltaics and wind energy could be stored through the electrocatalytic production of fuels from CO 2. These could then be burned as needed. and Xiong, Y.
The productivity of photosynthesis is proportional to the surface area exposed to sunlight, a capricious source of energy in many regions. Furthermore, the maximum efficiency of solar energy conversion by photosynthesis is 5%, while typical solar panel efficiency reaches 20%. each gram of acetogenic M. an and Park.
Roskill’s new Sustainability Monitor, and subsequent White Paper, analyze the energy consumption and CO 2 emissions of the lithium supply chain. This analysis, based on a bottom-up calculation of energy use by source, accounts for all scope 1 and 2 emissions within the production chain, measured on an operation by operation basis.
The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). H 2 O) on catalytically active sites on ?-Fe Makgae, O.A.
The facility will filter 4,000 metric tons of carbon dioxide from the air and mineralize it underground. With direct air capture technology, carbon dioxide is extracted from the ambient air and air free of CO 2 is returned to the atmosphere. The carbon dioxide is thus permanently removed from the atmosphere.
ADM and the University of Illinois announced the successful completion of the Illinois Basin - Decatur Project (IBDP), a carbon capture and storage (CCS) project designed to evaluate and test the technology at commercial scale. —Sallie Greenberg, Principal Scientist Energy & Minerals, Illinois State Geological Survey.
These VPPAs will enable Honda to fully offset the remaining carbon-intensive grid-supplied electricity being used in its Ohio, Indiana, and Alabama automobile manufacturing operations, and will help the company meet its voluntary carbon reduction goal. will deliver to the grid by the end of 2020.
A paper on the work is published in the journal Nano Energy. Jeongwon Kim, Arim Seong, Yejin Yang, Sangwook Joo, Changmin Kim, Dong Hyup Jeon, Liming Dai, Guntae Kim (2021) “Indirect surpassing CO 2 utilization in membrane-free CO 2 battery,” Nano Energy doi: 10.1016/j.nanoen.2020.105741. 2020.105741.
BMW i Ventures has invested in Prometheus Fuels ( earlier post ), a company removing CO 2 from the air and turning it into zero-net carbon gasoline that it will sell at gas stations, at a price that competes with fossil fuels, starting as early as this year. —Greg Smithies, Partner, BMW i Ventures. to C 2 fuel products such as ethanol.
Lloyd Distinguished Service Professor in Economics, and José-Luis Cruz of Princeton University assesses the local social cost of carbon (LSCC) and how that cost aligns with the carbon reduction pledges countries made under the Paris Agreement. The price of carbon should then be set at this price, everywhere.
Researchers at Illinois Institute of Technology (IIT), with colleagues at the University of Pennsylvania and the University of Illinois at Chicago have developed an electrolyzer capable of converting carbon dioxide into propane in a manner that is both scalable and economically viable. Nat Energy doi: 10.1038/s41560-023-01314-8
The US Department of Energy (DOE) announced $3 million in funding for 10 high-performance computing projects that will advance cutting-edge manufacturing and clean energy technologies. Improvements in manufacturing processes that result in significant national energy savings and carbon emissions. Solar Turbines.
With the support of a grant from the Department of Energy, Miao Yu, the Priti and Mukesh Chatter ’82 Career Development Chair of Chemical and Biological Engineering at Rensselaer Polytechnic Institute, will develop a novel porous material capable of capturing even very small concentrations of CO 2 in the air and collecting the gas for further use.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. Nature Energy doi: 10.1038/s41560-020-0678-6.
An international collaboration of scientists has taken a significant step toward the realization of a nearly “green” zero-net-carbon technology that can efficiently convert CO 2 and hydrogen into ethanol. There has been much work on carbon dioxide conversion to methanol, yet ethanol has many advantages over methanol.
The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light. Photosynthesis is the process by which chloroplasts in plants and some organisms use sunlight, water and carbon dioxide to create food or energy. Resources Yu, J.,
Mexico-based global construction materials company CEMEX is partnering with integrated chemicals and energy company Sasol ecoFT and renewable energy company ENERTRAG to combine CO 2 with hydrogen to produce sustainable aviation fuel. To reach carbon neutrality, these emissions must be captured, stored, or repurposed in some way.
Methane derived from CO 2 and renewable H 2 sources is an attractive fuel, and it has great potential as a renewable hydrogen carrier as an environmentally responsible carbon capture and utilization approach. Using EEMPA instead reduces the energy needed to fuel such a reaction. —Heldebrant et al. Heldebrant, D., Lopez, J.S.,
The extended drought in California could cut the state’s summer electricity generation from hydropower nearly in half compared with normal precipitation conditions, according to an analysis by the US Energy Information Administration (EIA). Figure 2 data source: US Energy Information Administration, Electric Power Monthly.
US electric power sector CO 2 emissions have declined 28% since 2005 because of slower electricity demand growth and changes in the mix of fuels used to generate electricity, according to the US Energy Information Administration (EIA). Source: US EIA, US Energy-Related Carbon Dioxide Emissions , 2017.
To capture as much carbon as possible, you want the longest chain hydrocarbons. Chains with eight to 12 carbon atoms would be the ideal. An uncoated catalyst gets covered in too much hydrogen on its surface, limiting the ability of carbon to find other carbons to bond with. —Zhou et al. That would be a big deal.
This will reduce the carbon footprint of our supply chain by 900,000 tonnes per year, while at the same time driving the transformation of the steel industry. The company will supply the BMW Group’s European plants with steel produced exclusively using hydrogen and electricity from renewable energies.
Ammonia, produced via the Haber-Bosch (HB) process, is globally the leading chemical in energy consumption and carbon dioxide emissions. In ammonia plants, hydrogen is generated by steam-methane reforming (SMR) and water-gas shift (WGS) and, subsequently, is purified for the high-pressure ammonia synthesis.
The SOLETAIR project ( earlier post ) has produced its first 200 liters of synthetic fuel from solar energy and the air’s carbon dioxide via Fischer-Tropsch synthesis. The mobile chemical pilot plant produces gasoline, diesel, and kerosene from regenerative hydrogen and carbon dioxide. The SOLETAIR project started in 2016.
Israel-based NewCO2Fuels (NCF), a subsidiary of GreenEarth Energy Limited in Australia, reported completion of stage 1 testing of its proof-of-concept system for the conversion of CO 2 into fuels using solar energy. System and method for chemical potential energy production. Concept of the NCF process. Click to enlarge.
Researchers at the University of Surrey (UK) are developing a process to capture carbon dioxide directly from the air and then use dynamic catalysis to create methanol—a valuable chemical that, made this way, could be carbon-negative. Its value could offset the cost of direct air capture. —Dr Duyar.
The US Department of Energy announced $11.5 million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. The technology uses 10-15% less energy than existing amine absorbents. Colorado State University.
Evonik and Siemens Energy commissioned a pilot plant—sponsored by the German Federal Ministry of Education and Research (BMBF)—that uses carbon dioxide and water to produce chemicals. The necessary energy is supplied by electricity from renewable sources. The pilot plant is located in Marl, in the northern Ruhr area.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content