This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
Ricardo has developed a hydrogen-fueled research engine which could offer a renewable, economic and durable technology solution to accelerate zero-carbon emissions in heavy duty trucks, off-highway machines and marine vessels. —Adrian Greaney, Director of Technology and Digital at Ricardo Automotive and Industrial EMEA Division.
The US Department of Energy (DOE) is awarding $20 million in funding to a project to demonstrate technology that will produce clean hydrogen energy from nuclear power. This approach will allow clean hydrogen to serve as a source for zero-carbon electricity and represent an important economic product for nuclear plants beyond electricity.
As part of a larger £90 million (US$117 million) package of awards to cut carbon emissions in industry and homes, the UK is awarding £28 million (US$36.5 million) to five demonstration phase projects for low-carbon hydrogen production. HyNet – low carbon hydrogen plant. Led by Cranfield University. Contract value: £3.12
A study by University of Chicago economist Esteban Rossi-Hansberg, the Glen A. Lloyd Distinguished Service Professor in Economics, and José-Luis Cruz of Princeton University assesses the local social cost of carbon (LSCC) and how that cost aligns with the carbon reduction pledges countries made under the Paris Agreement.
There is a high degree of variability in the carbon intensity of hydrogen production, even using the same technologies or pathways. The creation and adoption of these technical protocols will help build and harmonize the hydrogen market, contextualize climate solutions, advance transparency and support global trade in low-carbon hydrogen.
Siemens Energy, Duke Energy and Clemson University have teamed up to study the use of hydrogen for energy storage and as a low- or no-carbon fuel source to produce energy at Duke Energy’s combined heat and power plant located at Clemson University in South Carolina.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
Syzygy is advancing a new photocatalytic chemical reactor that could significantly reduce the cost and carbon emissions in the production process for a wide range of major chemicals such as fuel, fertilizer, and plastic. The Series A funding comes on the heels of other significant developments for Syzygy.
million in funding for 12 projects as part of Phase 1 of the Advanced Research Projects Agency-Energy’s (ARPA-E’s) FLExible Carbon Capture and Storage (FLECCS) program. Colorado State University. Synergistic Heat Pumped Thermal Storage and Flexible Carbon Capture System - $1,000,000. University of Pittsburgh.
The new catalyst contains cobalt interspersed with nitrogen and carbon. Here we report an atomically dispersed Co and N co-doped carbon (Co–N–C) catalyst with a high catalytic oxygen reduction reaction activity comparable to that of a similarly synthesized Fe–N–C catalyst but with a four-time enhanced durability. —Yuyan Shao.
An Ohio State University team has demonstrated the successful operation of Coal-Direct Chemical Looping (CDCL)—which chemically harnesses coal’s energy and efficiently contains the carbon dioxide produced before it can be released into the atmosphere. The carbon dioxide is separated and can be recycled or sequestered for storage.
The US Department of Energy (DOE) has signed a new 5-year cooperative agreement with Southern Company to evaluate advanced carbon-capture and gasification technologies at the National Carbon Capture Center (NCCC) in Wilsonville, Ala. The total award value is $187 million.
Energy efficiency is key to the future of hydrogen as a clean fuel. Our work shows that protonic membranes can make hydrogen from ammonia, natural gas and biogas so efficiently that hydrogen fuel cell cars will have lower carbon footprint than electric cars charged from the electricity grid.
Scientists from Stanford University, SLAC National Accelerator Laboratory and the Technical University of Denmark have identified a new nickel-gallium catalyst that converts hydrogen and carbon dioxide into methanol at ambient pressure and with fewer side-products than the conventional catalyst.
Hyundai Motor Group will collaborate with the Saudi Arabian Oil Company (Aramco) and King Abdullah University of Science and Technology (KAUST) jointly to research and develop an advanced fuel for an ultra lean-burn, spark-ignition engine that aims to lower the overall carbon dioxide emissions of a vehicle.
Although the thermocatalytic ammonia decomposition reaction (ADR) is an effective way to obtain clean hydrogen, it relies on the use of expensive and rare ruthenium (Ru)-based catalysts, making it not sustainable or economically feasible. C for clean on-site hydrogen generation. C over the inexpensive catalyst.
New hydrogen production technology developed at the University of British Columbia (UBC) will be tested in a $7-million project between UBC, the government of Alberta and Alberta utility company ATCO. UBC clean hydrogen technology deployed to Alberta in a $7-million collaboration. Hydrogen plant schematic. Image: MéridaLabs.
The selected projects—spanning 22 states and coordinated at universities, national laboratories, and private companies—will advance technologies for a wide range of areas, including electric vehicles, offshore wind, storage and nuclear recycling. Cornell University. Stanford University. The Ohio State University.
The proposed 125-foot vessel will take three years to design, build, and commission, and replace Research Vessel Robert Gordon Sproul , which has served thousands of University of California students in its nearly 40 years of service but is nearing completion of its service life.
Under current policies, home energy storage systems would also often increase carbon emissions, according to a study by a team of researchers at the University of California San Diego published in the journal Environmental Science & Technology.
in close collaboration with GTI and The University of Texas at Austin, has launched a US Department of Energy project, Demonstration and Framework for H2@Scale in Texas and Beyond. Frontier Energy, Inc., The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy.
Researchers from London South Bank University (LSBU), School of the Built Environment and Architecture, are investigating the use of metal hydrides to absorb, release and store hydrogen for fuel cell buses. The impact of carbon materials on the hydrogen storage properties of light metal hydrides.” EP/T022760/1. EPSRC funding award.
Schematic overview of the primary black-carbon emission sources and the processes that control. the distribution of black carbon in the atmosphere and determine its role in the climate system. Accounting for all of the ways black carbon can affect climate, it is believed to have a warming effect of about 1.1 Source: Bond et al.
Researchers from Chalmers University of Technology, in collaboration with KTH Royal Institute of Technology in Stockholm, have produced a structural battery that performs ten times better than all previous versions. It contains carbon fiber that serves simultaneously as an electrode, conductor, and load-bearing material.
C-Zero’s technology, which was initially developed at the University of California, Santa Barbara, uses innovative thermocatalysis to split methane into hydrogen and solid carbon in a process known as methane pyrolysis. cal/mol H 2 ) is slightly (. 2017.10.002 (open access). 10, 40882-40893 doi: 10.1039/D0RA07440C (open access).
Available clean fuels for the state of Washington could meet a 2028 target of 11.2% reduction in average carbon intensity by 2028, according to an analysis completed by independent research firm Cerulogy and commissioned by the Union of Concerned Scientists (UCS). Carbon savings against baseline delivered in Steady Progress scenario.
Scientists from Emory University, NASA’s Jet Propulsion Laboratory and the California Air Resources Board teamed to analyze satellite data to determine the 15-year trend of PM 2.5 LA=Los Angeles basin, CV=Central Valley, OC=Organic Carbon, EC=Elemental Carbon. pollution in the state. to predict PM 2.5 Click to enlarge.
The new companies are focused on creating electrochemical systems that can help reduce carbon emissions in hard-to-decarbonize sectors and represent the program’s fourth cohort. Applications include green hydrogen production, hydrogen fuel cells and carbon capture and utilization (CCU).
In a first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels. Direct observation of hydrogen at carbon-rich dislocations and grain boundaries provides validation for embrittlement models. Credit: University of Sydney. Credit: University of Sydney.
Researchers at the University of Michigan, McGill University and McMaster University have developed a binary copper?iron The researchers think that it could be recycling smokestack carbon dioxide into clean-burning fuel within 5-10 years. Turning carbon dioxide into methane is a very difficult process.
ClearFlame Engine Technologies , a growing startup dedicated to the development of clean engine technology ( earlier post ), secured $2.5 Historically, clean-burning fuels, and those that are easy to make from waste CO 2 streams or syngas, have failed to ignite using MCCI.
Rice University researchers have won a $3.3-million million Advanced Research Projects Agency - Energy (ARPA-E) OPEEN+ grant to develop a method to convert natural gas into carbon nanotubes for materials that can replace metals in large-scale applications. The process would also produce valuable hydrogen as a side product.
Syzygy Plasmonics , LOTTE Chemical and LOTTE Fine Chemical (LOTTE Chemical HQ), and Sumitomo Corporation of Americas (SCOA) announced a joint development agreement to test a photocatalytic reactor for clean hydrogen production. million tons of hydrogen per year domestically by 2030. Earlier post.).
20 nm) are selective toward the formation of carbon nanotubes (CNTs), while small Ni particle sizes (i.e., Solid carbon that accumulates on the catalyst is washed and separated for commercial use, while the metallic precursors are re-synthesized and recycled back into the reactor. Further, large Ni particle sizes (i.e., >20
E) will award $39 million in funding to 16 projects across 12 states to develop market-ready technologies that will increase domestic supplies of critical elements required for the clean energy transition. The projects selected projects as part of the MINER program are: University of Texas at Arlington. Columbia University.
Twenty-three of the projects receiving funding are headed by universities, eight are led by the Energy Department’s National Laboratories and one project is run by a non-profit organization. University of California, Berkeley. Center for Gas Separations Relevant to Clean Energy Technologies (CGS). Northwestern University.
A team led by Kanazawa University in Japan has developed a cleaner method for the recycling of several rare earths (REs) such as yttrium (Y) and europium (Eu) used as phosphors in fluorescent lamps (FLs). Rare-earths (REs) are key components for the transition to a greener energy profile and low carbon society.
IBM Quantum is an industry-first initiative to build universal quantum systems for business and science applications. bp will work with IBM to explore using quantum computing to solve business and engineering challenges and explore the potential applications for driving efficiencies and reducing carbon emissions.
Average annual percentage of black carbon pollution related to Chinese exports. Dust, ozone and carbon can accumulate in valleys and basins in California and other Western states. Black carbon is a particular problem: Rain doesn’t easily wash it out of the atmosphere, so it persists across long distances. Credit: Lin et al.
These project teams will pursue methods to create high-value carbon and hydrogen from methane (four projects, $14.4 The methane cohort teams will focus on industrially scalable ways to produce high quality carbon and hydrogen. The methane cohort awards: Rice University. Palo Alto Research Center, Inc.
Clean Energy Ventures , a $110-million venture capital firm investing in early-stage climate tech startups, is leading the investments in two battery startups: one in the upstream ( N th Cycle ) and one in the downstream ( Volexion ). million in funding from investors led by climate tech venture capital firm Clean Energy Ventures.
The National Academies of Sciences, Engineering, and Medicine’s (NASEM’s) Board on Environmental Studies and Toxicology (BEST) announced the provisional committee for a new consensus study, Current Methods for Life Cycle Analyses of Low Carbon Transportation Fuels in the United States. Dunn, PhD, Northwestern University. Jennifer B.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content