This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
LeMond Composites, founded by three-time Tour de France champion Greg LeMond, has licensed a low-cost, high-volume carbonfiber manufacturing process developed at the US Department of Energy’s Oak Ridge National Laboratory (ORNL). Earlier post.)
million from the US Department of Energy (DOE) to develop and validate technology that will reduce the cost of manufacturing high-performance carbonfiber by 25% to make composite natural gas or hydrogen fuel tanks to power cars and trucks. The Institute for Advanced Composites Manufacturing Innovation (IACMI) will receive $2.7
The projects will feature collaborations with EERE’s Advanced Manufacturing Office on manufacturing reliable and affordable electrolyzers and with EERE’s Vehicle Technologies Office on developing low-cost, high-strength carbonfiber for hydrogen storage tanks. Carbon Composite Optimization Reducing Tank Cost.
Department of Energy (DOE) grant to continue their research in developing low-cost, high-strength carbonfiber. The funding was part of DOE’s strategy to invest in discovery and development of novel, low-cost materials necessary for hydrogen storage and for fuel cells onboard light-duty vehicles.
To date, efforts have been invested in developing carbonfibers, carbon electrodes, porous carbon foam/scaffolds, and carbon nanosheets from asphaltenes. Consequently, research on the valorization of asphaltenes has sparked over the past few years. —Saadi et al.
RMX Technologies and the Department of Energy’s Oak Ridge National Laboratory have signed an exclusive licensing agreement for a new technology that significantly reduces the time and energy needed in the production of carbonfiber. Oxidation is the most time-consuming phase of the multistep carbonfiber conversion process.
Researchers at the Department of Energy’s Oak Ridge National Laboratory have demonstrated a production method they estimate will reduce the cost of carbonfiber as much as 50% and the energy used in its production by more than 60%. Details of the cost analysis will be shared with the prospective licensees.
CarbonFiber or Lightweight Materials. VTO is seeking projects that address the major challenges to developing and commercializing carbonfiber composites for lightweight structures. Most critical is the cost of the carbonfiber. The cost to manufacture the carbonfiber is high.
350 to 700 bar) storage vessels are constructed using expensive high-strength carbonfiber, such as Toray T700S, in a composite matrix as an overwrap to contain the stress. An example of a possible solution is using fibers with mechanical strengths matching or exceeding the properties of aerospace quality carbonfiber (e.g.
Demonstration scale plasma oxidation of carbonfiber This project will scale up a carbonfiber oxidation technology that reduces energy consumption and oxidation time. Utah State University. The Ohio State University. Fuels and lubricants (Area of Interest 5). The Regents of the University of Michigan.
This project will develop a new process that enables low-cost, domestic manufacturing of magnesium. This project will develop a novel lowcost route to carbonfiber using a lignin/PAN hybrid precursor and carbonfiber conversion technologies leading to high performance, low-costcarbonfiber.
The third major avenue of cost reduction is the application of mass production technology to the fuel cell stack, the tank, and other components. As an example, Yokoyama used the carbonfiber reinforced polymer (CFRP) hydrogen storage tank. Conditions for mass introduction.
FCTO anticipates that the FOA may include the following Topic Areas: Topic Area 1: Reducing the Cost of Compressed Hydrogen Storage Systems. Topic 1 will focus on the development of complete, low-cost, compressed hydrogen storage systems. kWh when manufactured in high volume; and. Hydrogen Storage'
Known as 223 and Racetrak, these technologies offer comparable performance to existing composites solutions, but with a range of additional benefits, and at a cost that brings them within reach of mainstream applications. CFRP is a material of huge promise.
Potential high-value products from isolated lignin include low-costcarbonfiber, engineering plastics and thermoplastic elastomers, polymeric foams and membranes, and a variety of fuels and chemicals—all currently sourced from petroleum. Each product stream, however, has its own distinct challenges.
million for 30 new projects aimed at discovery and development of novel, low-cost materials necessary for hydrogen production and storage and for fuel cells onboard light-duty vehicles. Precursor Development for Low-Cost, High-Strength CarbonFiber. Hydrogen Storage Materials Discovery. GreenWay Energy, LLC.
Materials Innovation Technologies will develop lowcostcarbonfiber composite manufacturing technology to address the need for cost-effective, high volume production, lighter-weight components for automobiles and other vehicles by designing, manufacturing and testing several target components. TDA Research Inc.
The racer can reach a top speed of 140 km/h (87 mph); two lithium polymer batteries with a combined capacity of 8 kWh support a range of 22 km (13.7 The integrated 3D Hall sensor technology HallinOne allows 3-axis magnetic field measurement with one sensor chip, enabling low-cost contactless position measuring systems.
DE-FOA-0000648 ) This funding will support the development of high-strength, lightweight carbonfiber composites and advanced steels and alloys that will help vehicle manufacturers improve the fuel economy of cars and trucks while maintaining and improving safety and performance.
The project is to develop a cost-effective and efficient smart structural coating deposition system and advanced high-end technology tools to inspect and rehabilitate gas distribution pipelines. The designed polymer composite coating materials provide structural strength and facile processability with smart functionalities.
Composite carbonfiber and steel vessels are a potential alternative. To become economically competitive with steel, lower-cost, high-strength carbonfiber and improved batch-to-batch carbonfiber quality are needed.
Development of Low-cost, High Strength Automotive Aluminum Sheet (Area of Interest 1). Integrated Computational Materials Engineering (ICME) Development of CarbonFiber Composites for Lightweight Vehicles (Area of Interest 2). Description. Alcoa, Inc. 2,391,770. . Ford Motor Company. Brookhaven National Lab.
The new Institute for Advanced Composites Manufacturing Innovation (IACMI), announced today by President Obama, will focus on advanced fiber-reinforced polymer composites that combine strong fibers with tough plastics to yield materials that are lighter and stronger than steel. Adherent Technologies, Inc.; TPI Composites, Inc.;
Everybody is growing carbon nanotubes on substrates. This means we can produce the material at a lowcost, and it also means we can produce pieces big enough to cover an aircraft. We’re the only people who are producing them on a large-scale and continuous process, and not just in batches. Khalid Lafdi. Brian Rice.
Two projects will research, develop, and use integrated computation materials engineering (ICME) techniques to develop lowcostcarbonfiber from a variety of feedstocks and precursors that can be used to make carbonfiber with less energy and lower cost. Lead organization. Description.
REPAIR teams will develop technology that enables gas utilities to update their distribution systems at lowcost and continue to reliably service commercial and residential gas delivery needs nationwide. The designed polymer composite coating materials provide structural strength and facile processability with smart functionalities.
The objective of this AOI is to accelerate the realization of lighter weight vehicle materials made from magnesium and carbonfiber capable of attaining 50% weight reduction of passenger vehicles. Subtopics include: Low-Cost Development of Magnesium. Development of Low-CostCarbonFiber.
This unique production process creates an engineered hinge embedded within a single composite preform of carbonfiber reinforced polymer (CFRP). 223 enables the creation of 3D structures from 2D materials, opening the potential for manufacture techniques previously constrained by cost or production rate.
Area Of Interest (AOI) 1: Development of Low-Cost, High-Strength Automotive Aluminum Sheet. This AOI is to address two major technical gaps in the performance of automotive aluminum alloys: Low strength among cost competitive automotive sheet alloys such as 5xxx and 6xxx series. CarbonFiber Composite Targets.
Researchers at Oak Ridge National Laboratory (ORNL) have developed a new class of high-performance thermoplastic elastomers for cars and other consumer products by replacing the styrene in ABS (acrylonitrile, butadiene and styrene) with lignin, a brittle, rigid polymer that, with cellulose, forms the woody cell walls of plants.
As part of the EMN, the HydroGEN consortium will provide industry and academia the expertise and capabilities to more quickly develop, characterize, and deploy high-performance, low-cost advanced water-splitting materials for lower cost hydrogen production.
These new GaN power devices will enable the next generation of low-cost, fast, small, and reliable power electronics, which are key for efficient power conversion in data centers, solar farms, power grids, and electric vehicles. Stanford University. The Ohio State University. University of Washington. Pratt & Whitney.
The drive unit’s high efficiency means lowcosts of ownership: Fuel costs compared with an equivalent gasoline engine are much lower, at around €4 (US $4.70) per 100 kilometers (62.1 The figures for the A5 Sportback g-tron with S tronic are almost as good: In the gas mode, it too manages on just 3.8 kilogram (1.3 mi) available.
Some specific improvements which are of interest, but are not limited to, include: new low-cost materials, improvements in manufacturing processes, speed or yield, improved cell/pack design minimizing inactive material, significant improvement in specific energy (Wh/kg) or energy density (Wh/L), and improved safety.
Specifically, lowcost and energy-efficient processes are sought that can be demonstrated and validated under field conditions to meet needs of the nascent algal biomass industry. Algae cultures tend to be relatively dilute, and the energy requirement to remove water from the cultures can be a significant portion of the energy balance.
The papers provide technical details on the high performance fuel-cell (FC) stack; specific insights into FC separator, and stack manifold; the newly developed boost converter; and the new high-pressure hydrogen storage system with innovative carbonfiber windings. For the FCHV-adv, Toyota had used aerospace grade carbonfiber.
Accelerated Development and Deployment of Low‐Cost Automotive Mg Sheet Components (Area of Interest 3). Demonstrate the joining of steel to aluminum and aluminum to carbonfiber reinforced thermoplastic composites using the existing spot welding infrastructure. Description. Federal funding. Federal funding. Description.
Mass consumer applications would require a far more efficient and low-cost manufacturing technique. Production of Low-Cost, High-Quality Metallic and Semiconducting Single Wall Carbon Nanotube Inks. High-Risk, Low-CostCarbon Nanofiber Manufacturing Process Scale-Up. Lead Grantee. Description.
This project will demonstrate a robust, cost effective, and versatile technique to join die cast magnesium to dissimilar aluminum alloys and mild and high strength steels. This project will demonstrate laser-assisted joining of aluminum and carbonfiber components to reduce vehicle weight. 587,248 (jointly funded). 1,003,674.
Secretary Moniz also announced that two innovative projects at CALSTART and the National Association of Regional Councils will receive $3 million to develop systems that help companies combine their purchasing of advanced vehicles, components, and infrastructure to reduce incremental cost and achieve economies of scale.
The inner layer consists of a gas-impermeable polyamide matrix, while a second composite layer of carbonfiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) gives the tank its extremely high strength. The third glass fiber layer helps to visualize any external effects. kilogram (1.3
Further, alloying or coating pathways towards low-cost, effective passive films, have not been sufficiently explored in a sound and scientific way. CarbonFiberPolymer Composite. Characteristics of commercially viable solutions include lowcost, high efficiency, and high volume production of components.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content