This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
These projects will fuel the next round of research, development, and demonstration (RD&D) activities under H2@Scale’s multi-year initiative to fully realize hydrogen’s benefits across the economy. TOPIC 2: ADVANCED CARBONFIBER FOR COMPRESSED HYDROGEN AND NATURAL GAS STORAGE TANKS. Missouri University of Science & Technology.
The US Department of Energy (DOE) awarded $19 million for 13 projects in traditionally fossil-fuel-producing communities across the country to support production of rare earth elements and critical minerals essential to the manufacturing of batteries, magnets, and other components important to the clean energy economy.
For example, the Smart Manufacturing Innovation Institute will partner with IACMI to demonstrate the value of using advanced sensors in the production of carbonfiber and with PowerAmerica to showcase the energy savings of using advanced sensors in the production of new wide bandgap semiconductor circuit boards. Missouri U.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content