This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Today, acrylonitrile is used in the production of acrylic fibers for carpets, clothes, and fabrics, and in plastics such as food containers, and packaging materials. The high acrylonitrile yield allows us to propose a potential industrial process for the conversion of lignocellulosic biomass to renewable acrylonitrile and carbonfibers.
The selections announced focus on eight approaches to improving vehicle efficiency: Advanced fuels and lubricants : Eight projects awarded to improve fuels and lubricants that will enable optimal performance of advanced combustion engines. Wisconsin Engine Research Consultants LLC. Advanced fuels and lubricants. Grantee Description.
Integrated Computational Materials Engineering (ICME) Development of CarbonFiber Composites for Lightweight Vehicles (Area of Interest 2). This project will develop, integrate and implement predictive models for Carbon-Fiber Reinforced Polymer composites that link the material design, molding process and final performance.
MOVE projects aim to engineer light-weight, affordable natural gas tanks for vehicles as well as to develop natural gas compressors that can efficiently fuel a natural gas vehicle at home. million award to engineer an adsorbed natural gas storage system utilizing a novel external framework and internal porous materials. Earlier post.).
The new institute pairs leading carbonfiber producers and suppliers—such as Materials Innovation Technologies, Harper International, and Strongwell—with key end users such as TPI for wind turbines and Ford, Honda and Volkswagen for automobiles. Adherent Technologies, Inc.; Honda R&D Americas, Inc.; TPI Composites, Inc.;
Eight projects are aimed at improvements including developing and demonstrating dual-fuel or dedicated natural gas engine technologies for high-efficiency medium and heavy-duty vehicles to reduce petroleum usage and developing advanced computational fluid dynamics models to accelerate the development of advanced engine technologies.
will partner with ANL to increase efficiency and reduce emissions on optimizing heat transfer in diesel engines through simulations of piston and spray geometry in a project titled “Heavy-duty Diesel Engine Combustion Optimization for Reduced Emissions, Reduced Heat Transfer, and Improved Fuel Economy.” Vitro Flat Glass LLC.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content