This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Today, acrylonitrile is used in the production of acrylic fibers for carpets, clothes, and fabrics, and in plastics such as food containers, and packaging materials. The high acrylonitrile yield allows us to propose a potential industrial process for the conversion of lignocellulosic biomass to renewable acrylonitrile and carbonfibers.
Eaton Corporation will develop an at-home natural gas. Eaton will engineer a heat-transfer. intestine storage tanks could be as light as today’s carbonfiber. current carbonfiber tanks at one-third the cost. Drivers will be able to connect their vehicle to any natural gas. Corporation. Pacific Northwest.
This project will develop a novel low cost route to carbonfiber using a lignin/PAN hybrid precursor and carbonfiber conversion technologies leading to high performance, low-cost carbonfiber. Plasan Carbon Composites. Eaton Corporation. . $6,000,000. Zoltek Companies, Inc. 914,551.
Integrated Computational Materials Engineering (ICME) Development of CarbonFiber Composites for Lightweight Vehicles (Area of Interest 2). This project will develop, integrate and implement predictive models for Carbon-Fiber Reinforced Polymer composites that link the material design, molding process and final performance.
The new institute pairs leading carbonfiber producers and suppliers—such as Materials Innovation Technologies, Harper International, and Strongwell—with key end users such as TPI for wind turbines and Ford, Honda and Volkswagen for automobiles. Adherent Technologies, Inc.; Honda R&D Americas, Inc.; TPI Composites, Inc.;
Eaton Corporation will partner with ORNL to develop waste heat recovery (WHR) technology that can be applied to industrial manufacturing processes and vehicle operations in a project titled “High Performance Computing to Enable Next-generation Low- temperature Waste Heat Recovery.”. million tons of CO 2.
This project will utilize a systems approach to design and demonstrate an ultra-lightweight carbonfiber reinforced thermoplastic composites door assembly through the integration of unique designs, novel materials, and manufacturing technologies and joining/assembly of subsystems. Area of Interest 3). 2,013,571.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content